805
Views
16
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Dynamics and driving mechanisms of asymmetric human water consumption during alternating wet and dry periods

, , , &
Pages 507-524 | Received 13 Feb 2018, Accepted 22 Jan 2019, Published online: 11 Apr 2019

References

  • Aghakouchak, A., et al., 2015. Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research, 41 (1), 307–311. doi:10.1016/j.jglr.2014.12.007
  • Boomer, I., et al., 2000. The palaeolimnology of the Aral Sea: a review. Quaternary Science Reviews, 19 (13), 1259–1278. doi:10.1016/S0277-3791(00)00002-0
  • Cabral, R.B., et al. 2016. Unexpected management choices when accounting for uncertainty in ecosystem service tradeoff analyses. Conservation Letters, 10 (4) (2016-10-24). doi:10.1111/conl.12303
  • Cai, X., Mckinney, D.C., and Rosegrant, M.W., 2003. Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural Systems, 76 (3), 1043–1066. doi:10.1016/S0308-521X(02)00028-8
  • Cheng, G., et al., 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1 (3), 413–428. doi:10.1093/nsr/nwu017
  • Constanza, R., et al., 2007. Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio, 36 (7), 522–527. Available from: https://www.jstor.org/stable/25547806
  • Cretaux, J.-F., Letolle, R., and Bergé-Nguyen, M., 2013. History of Aral Sea level variability and current scientific debates. Global and Planetary Change, 110, 99–113. doi:10.1016/j.gloplacha.2013.05.006
  • Dannenberg, A., et al. 2011. Coordination under threshold uncertainty in a public goods game. Social Science Electronic Publishing. Available from:: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1983266
  • Deng, M., 2009. Water resource management theory and practice in Tarim River Basin. Beijing, China: Science Press. ( In Chinese).
  • Di Baldassarre, G., et al., 2017. Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation. Earth System Dynamics, 8 (1), 225–233. doi:10.5194/esd-8-225-2017
  • Ding, H., et al. 2001. The characteristics and some problems in the exploitation and utilization of water resources in the Shulehe River Basin, Gansu Province. Arid Zone Research, 18 (4). doi:10.13448/j.cnki.jalre.2002.01.009 ( In Chinese).
  • Eliasson, J., 2015. The rising pressure of global water shortages. Nature, 517 (7532), 522–555. doi:10.1038/517006a
  • Elshafei, Y., et al., 2015. A model of the socio-hydrologic dynamics in a semiarid catchment: isolating feedbacks in the coupled human-hydrology system. Water Resources Research, 51 (8), 6442–6471. doi:10.1002/2015WR017048
  • Elshafei, Y., et al., 2014. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach. Hydrology and Earth System Sciences, 18 (6), 2141–2166. doi:10.5194/hess-18-2141-2014
  • Fang, C.L. and Qiao, B., 2005. Optimal thresholds of urban economic development and urbanization under scarce water resources in arid northwest China. Acta Ecologica Sinica, 25 (9), 2413–2422. ( In Chinese).
  • FAO, 2007. Coping with Water Scarcity: Challenge of the Twenty-first Century. Rome, Italy: United Nations Food and Agriculture Organization. Available from: http://www.fao.org/nr/water/docs/escarcity.pdf
  • Fischer, T., et al., 2013. Hydrological long-term dry and wet periods in the Xijiang River basin, South China. Hydrology and Earth System Sciences, 17 (1), 135–148. doi:10.5194/hess-17-135-2013
  • Fogt, R.L. and Bromwich, D.H., 2006. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. Journal of Climate, 19 (6), 979–997. doi:10.1175/JCLI3671.1
  • Glantz, M.H., 1999. Creeping environmental problems and sustainable development in the Aral Sea basin. Cambridge, UK: Cambridge University Press.
  • Gonzales, P. and Ajami, N., 2017. Social and structural patterns of drought-related water conservation and rebound. Water Resources Research, 53 (3), 10619–10634. doi:10.1002/2017WR021852
  • Guo, X., et al., 2015. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China. Hydrological Processes, 29 (22), 4703–4718. doi:10.1002/hyp.10495
  • Gustafsson, M., Biel, A., and Gärling, T., 1999. Overharvesting of resources of unknown size. Acta Psychologica, 103 (1–2), 47–64. doi:10.1016/S0001-6918(99)00024-4
  • Hanson, R.T., Newhouse, M.W., and Dettinger, M.D., 2004. A methodology to asess relations between climatic variability and variations in hydrologic time series in the southwestern United States. Journal of Hydrology, 287 (1–4), 252–269. doi:10.1016/j.jhydrol.2003.10.006
  • Kahneman, D. and Tversky, A., 1979. Prospect theory: an analysis of decision under risk. Econometrica, 47, 263. doi:10.2307/1914185
  • Kandasamy, J., et al., 2014. Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences, 18 (3), 1027–1041. doi:10.5194/hess-18-1027-2014
  • Kuil, L., et al., 2016. Conceptualizing socio-hydrological drought processes: the case of the Maya collapse. Water Resources Research, 52 (8), 6222–6242. doi:10.1002/2015WR018298
  • Lenton, T.M., et al., 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America, 105 (6), 1786. doi:10.1073/pnas.0705414105
  • Li, C. and Ma, H., 2012. Relationship between ENSO and winter rainfall over Southeast China and its decadal variability. Advances in Atmospheric Sciences, 29 (6), 1129–1141. doi:10.1007/s00376-012-1248-z
  • Li, W., et al., 2010. Water resources regulation and optimal allocation in arid inland basins of northwest China: the case of the Heihe River Basin. Beijing, China: Geological Publishing House. (In Chinese).
  • Liu, Y., et al., 2014. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji-Tire model. Hydrology and Earth System Sciences, 18 (4), 1289–1303. doi:10.5194/hess-18-1289-2014
  • Loucks, D.P., et al., 2005. Water resources systems planning and management: an introduction to methods, models and applications. Paris, France: UNESCO.
  • Lu, Z., et al., 2015. Evolution of the human-water relationships in the Heihe River basin in the past 2000 years. Hydrology and Earth System Sciences, 19 (5), 2261–2273. doi:10.5194/hess-19-2261-2015
  • Marston, L. and Konar, M., 2017. Drought impacts to water footprints and virtual water transfers of the central valley of California. Water Resources Research, 53 (7), 5756–5773. doi:10.1002/2016WR020251
  • Marston, L., et al., 2015. Virtual groundwater transfers from overexploited aquifers in the United States. Proceedings of the National Academy of Sciences of the United States of America, 112 (28), 8561–8566. doi:10.1073/pnas.1500457112
  • Mcbride, M., 2010. Threshold uncertainty in discrete public good games: an experimental study. Economics of Governance, 11 (1), 77–99. doi:10.1007/s10101-009-0069-8
  • Micklin, P.P., Aladin, N.V., and Plotnikov, I., 2014. The Aral Sea: the devastation and partial rehabilitation of a great lake. New York, USA: Springer.
  • Nezlin, N.P., Kostianoy, A.G., and Lebedev, S.A., 2004. Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation. Journal of Marine Systems, 47 (1–4), 67–75. doi:10.1016/j.jmarsys.2003.12.009
  • Qi, J., et al. 2014. The characteristics and driving forces of LUCC in the middle and lower reaches of Shule River Basin. Chinese Journal of Ecology, 33 (8). doi:10.13292/j.1000-4890.2014.0209 In Chinese.
  • Qi, J., et al., 2017. Responses of vegetation growth to climatic factors in Shule River Basin in Northwest China: a panel analysis. Sustainability, 9 (3), 368. doi:10.3390/su9030368
  • Reason, C.J.C. and Rouault, M., 2002. ENSO-like decadal variability and South African rainfall. Geophysical Research Letters, 29 (13). doi:10.1029/2002GL014663
  • Samian, M., et al., 2015. Identifying factors affecting optimal management of agricultural water. Journal of the Saudi Society of Agricultural Sciences, 14 (1), 11–18. doi:10.1016/j.jssas.2014.01.001
  • Samuel, J.M. and Sivapalan, M., 2008. A comparative modeling analysis of multiscale temporal variability of rainfall in Australia. Water Resources Research, 44 (7), 663–671. doi:10.1029/2007WR006373
  • Sivapalan, M. and Blöschl, G., 2015. Time scale interactions and the coevolution of humans and water. Water Resources Research, 51 (9), 6988–7022. doi:10.1002/2015WR017896
  • Sivapalan, M., Savenije, H.H.G., and Blöschl, G., 2012. Socio-hydrology: A new science of people and water. Hydrological Processes, 26 (8), 1270–1276. doi:10.1002/hyp.8426
  • Srinivasan, V., Konar, M., and Sivapalan, M., 2017. A dynamic framework for water security. Water Security, 19. doi:10.1016/j.wasec.2017.03.001
  • Srinivasan, V., et al., 2016. Prediction in a socio-hydrological world. Hydrological Sciences Journal, 1–8. doi:10.1080/02626667.2016.1253844
  • Tang, Q., Hu, H., and Oki, T., 2006. Hydrological processes within an intensively cultivated alluvial plain in an arid environment. Iahs Publication, 302, 134.
  • Troy, T.J., et al., 2015. Moving sociohydrology forward: a synthesis across studies. Hydrology and Earth System Sciences, 19 (8), 3667–3679. doi:10.5194/hess-19-3667-2015
  • Tversky, A. and Kahneman, D., 1973. Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232. doi:10.1016/0010-0285(73)90033-9
  • Tversky, A. and Kahneman, D., 1992. Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk & Uncertainty, 5 (4), 297–323. doi:10.1007/BF00122574
  • UNDP, 2006. Human development report 2006. United nations development programme. New York, NY, USA. Available from: http://hdr.undp.org/
  • Wei, J., Wei, Y., and Western, A., 2017. Evolution of the societal value of water resources for economic development versus environmental sustainability in Australia from 1843 to 2011. Global Environmental Change, 42, 82–92. doi:10.1016/j.gloenvcha.2016.12.005
  • Wilcoxon, F., Katti, S., and Wilcox, R.A., 1970. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.
  • Wu, G., et al., 2013. A dynamic model for vulnerability assessment of regional water resources in arid areas: a case study of Bayingolin, China. Water Resources Management, 27 (8), 3085–3101. doi:10.1007/s11269-013-0334-z
  • Xia, Z., et al., 2013. Utilization of water resources in arid area abroad and its lessons. Beijing, China: China Water and Power Press. (In Chinese).
  • Xiao, J., et al., 2008. Water production function during the whole growing stage for main crops in China. Chinese Agricultural Science Bulletin, 24 (3), 430–434. ( (In Chinese)).
  • Xu, C., et al., 2006. Climate change and hydrologic process response in the Tarim River Basin over the past 50 years. Chinese Science Bulletin, 51 (S1), 25–36. doi:10.1007/s11434-006-8204-1
  • Ye, M., Xu, H., and Song, Y., 2006. The utilization of water resources and its variation tendency in Tarim River Basin. Chinese Science Bulletin, 51 (S1), 16–24. doi:10.1007/s11434-006-8203-2
  • Yong, H., 2012. Water and soil resources development and utilization in the tarim river basin from the perspective of public management. Beijing, China: Ecomomy and Management Publishing House. (In Chinese).
  • Zhang, J., et al., 2003. Impact of climate change and variability on water resources in Heihe River Basin. Journal of Geographical Sciences, 13 (3), 286–292.
  • Zhou, S., et al., 2015. Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecological Engineering, 76, 14–26. doi:10.1016/j.ecoleng.2014.04.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.