4,011
Views
36
CrossRef citations to date
0
Altmetric
Research Article

A continuous modelling approach for design flood estimation on sub-daily time scale

ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 539-554 | Received 16 Jul 2018, Accepted 22 Jan 2019, Published online: 08 Apr 2019

References

  • Achleitner, S., et al., 2012. Analysing the operational performance of the hydrological models in an alpine flood forecasting system. Journal of Hydrology, 412-413, 90–100. doi:10.1016/j.jhydrol.2011.07.047
  • Achleitner, S., Rinderer, M., and Kirnbauer, R., 2009. Hydrological modeling in alpine catchments. Sensing the critical parameters towards an efficient model calibration. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 60 (6), 1507–1514. doi:10.2166/wst.2009.488
  • Andrieu, C., et al., 2003. An introduction to MCMC for machine learning. Machine Learning, 50 (1/2), 5–43. doi:10.1023/A:1020281327116
  • Arnaud, P., et al., 2011. Sensitivity of hydrological models to uncertainty in rainfall input. Hydrological Sciences Journal, 56 (3), 397–410. doi:10.1080/02626667.2011.563742
  • Arnaud, P., Cantet, P., and Odry, J., 2017. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling. Journal of Hydrology, 554, 360–369. doi:10.1016/j.jhydrol.2017.09.011
  • Bavay, M. and Egger, T., 2014. MeteoIO 2.4.2: a preprocessing library for meteorological data. Geoscientific Model Development, 7 (6), 3135–3151. doi:10.5194/gmd-7-3135-2014
  • Blazkova, S. and Beven, K., 1997. Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. Journal of Hydrology, 195 (1–4), 256–278. doi:10.1016/S0022-1694(96)03238-6
  • Blazkova, S. and Beven, K., 2004. Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 292 (1–4), 153–172. doi:10.1016/j.jhydrol.2003.12.025
  • Blöschl, G., ed., 2009. Hochwässer - Bemessung, Risikoanalyse und Vorhersage. ÖWAV- Seminar, Bundesamtsgebäude Wien, 26. Mai 2009. Wien: Techn. Univ. Wien, Inst. f. Wasserbau und Ingenieurhydrologie.
  • Blöschl, G., et al., eds. 2013. Runoff prediction in ungauged basins. Synthesis across processes, places and scales. Cambridge: Cambridge University Press.
  • BMLFUW, 2007. Hydrologischer Atlas Österreich. 3rd ed. Wien: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW).
  • BMLFUW, ed., 2011. Verfahren zur Abschätzung von Hochwasserkennwerten. Leitfaden. Wien: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW).
  • Boughton, W. and Droop, O., 2003. Continuous simulation for design flood estimation? A review. Environmental Modelling & Software, 18 (4), 309–318. doi:10.1016/S1364-8152(03)00004-5
  • Breinl, K., 2016. Driving a lumped hydrological model with precipitation output from weather generators of different complexity. Hydrological Sciences Journal, 61 (8), 1395–1414. doi:10.1080/02626667.2015.1036755
  • Breinl, K., et al., 2017. A joint modelling framework for daily extremes of river discharge and precipitation in urban areas. Journal of Flood Risk Management, 10 (1), 97–114. doi:10.1111/jfr3.12150
  • Brunner, M.I., et al., 2017. Flood type specific construction of synthetic design hydrographs. Water Resources Research, 53 (2), 1390–1406. doi:10.1002/2016WR019535
  • Buishand, T.A. and Brandsma, T., 2001. Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest-neighbor resampling. Water Resources Research, 11 (37), 2761–2776. doi:10.1029/2001WR000291
  • Burn, D.H., 2003. The use of resampling for estimating confidence intervals for single site and pooled frequency analysis/Utilisation d’un rééchantillonnage pour l’estimation des intervalles de confiance lors d’analyses fréquentielles mono et multi-site. Hydrological Sciences Journal, 48 (1), 25–38. doi:10.1623/hysj.48.1.25.43485
  • Coles, S., 2001. An introduction to statistical modeling of extreme values. 4th. London: Springer.
  • Dastorani, M., et al., 2013. River instantaneous peak flow estimation using daily flow data and machine-learning-based models. Journal of Hydroinformatics, 15, 1089–1098. doi:10.2166/hydro.2013.245
  • Di Baldassarre, G. and Montanari, A., 2009. Uncertainty in river discharge observations. A quantitative analysis. Hydrology and Earth System Sciences, 13 (6), 913–921. doi:10.5194/hess-13-913-2009
  • Dobler, C. and Pappenberger, F., 2013. Global sensitivity analyses for a complex hydrological model applied in an Alpine watershed. Hydrological Processes, 27 (26), 3922–3940. doi:10.1002/hyp.9520
  • Dung, N.V., et al., 2015. Handling uncertainty in bivariate quantile estimation – an application to flood hazard analysis in the Mekong Delta. Journal of Hydrology, 527, 704–717. doi:10.1016/j.jhydrol.2015.05.033
  • DVWK, ed., 1984. DVWK 113/1984. Arbeitsanleitung zur Anwendung von Niederschlag-Abfluß-Modellen in kleinen Einzugsgebieten. Hamburg: Deutscher Verband für Wasserwirtschaft und Kulturbau (DVWK).
  • DWA, ed., 2012. Ermittlung von Hochwasserwahrscheinlichkeiten. Merkblatt DWA-M 552. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA).
  • Elshafei, Y., et al., 2014. A prototype framework for models of socio-hydrology. Identification of key feedback loops and parameterisation approach. Hydrology and Earth System Sciences, 18 (6), 2141–2166. doi:10.5194/hess-18-2141-2014
  • European Union (EU), 2007. European Union on the assessment and management of flood risks. Directive 2007/60/EC of the European Parliament and the Council. Official Journal of the European Union L288/27. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0060&from=EN.
  • Falter, D., et al., 2015. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. Journal of Hydrology, 524, 182–193. doi:10.1016/j.jhydrol.2015.02.021
  • Förster, K., et al., 2016. An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1). Geoscientific Model Development, 9 (7), 2315–2333. doi:10.5194/gmd-9-2315-2016
  • Gaál, L., et al., 2015. Dependence between flood peaks and volumes. A case study on climate and hydrological controls. Hydrological Sciences Journal, 60 (6), 968–984. doi:10.1080/02626667.2014.951361
  • Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228 (1–2), 113–129. doi:10.1016/S0022-1694(00)00144-X
  • Grimaldi, S., et al., 2012a. Time of concentration. A paradox in modern hydrology. Hydrological Sciences Journal, 57 (2), 217–228. doi:10.1080/02626667.2011.644244
  • Grimaldi, S., et al., 2013. Flood mapping in ungauged basins using fully continuous hydrologic–hydraulic modeling. Journal of Hydrology, 487, 39–47. doi:10.1016/j.jhydrol.2013.02.023
  • Grimaldi, S. and Petroselli, A., 2015. Do we still need the rational formula? An alternative empirical procedure for peak discharge estimation in small and ungauged basins. Hydrological Sciences Journal, 60 (1), 67–77. doi:10.1080/02626667.2014.880546
  • Grimaldi, S., Petroselli, A., and Serinaldi, F., 2012b. Design hydrograph estimation in small and ungauged watersheds. Continuous simulation method versus event-based approach. Hydrological Processes, 26 (20), 3124–3134. doi:10.1002/hyp.8384
  • Güntner, A., et al., 2001. Cascade-based disaggregation of continuous rainfall time series: the influence of climate. Hydrology and Earth System Sciences, 5 (2), 145–164. doi:10.5194/hess-5-145-2001
  • Gupta, S.C., et al., 2015. Climate and agricultural land use change impacts on streamflow in the upper midwestern United States. Water Resources Research, 51 (7), 5301–5317. doi:10.1002/2015WR017323
  • Gutknecht, D., et al., 2006. Ein “Mehr-Standbeine”-Ansatz zur Ermittlung von Bemessungshochwässern kleiner Auftretenswahrscheinlichkeit. Österreichische Wasser- und Abfallwirtschaft, 58 (3–4), 44–50. doi:10.1007/BF03165683
  • Haberlandt, U., et al. 2011. Rainfall generators for application in flood studies. In: A.H. Schumann, ed. Flood risk assessment and management. Dordrecht: Springer Netherlands, 117–147. doi:10.1007/978-90-481-9917-4_7
  • Haberlandt, U. and Radtke, I., 2014. Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows. Hydrology and Earth System Sciences, 18 (1), 353–365. doi:10.5194/hess-18-353-2014
  • Holzmann, H., et al., 2010. Auswirkungen möglicher Klimaänderungen auf Hochwasser und Wasserhaushaltskomponenten ausgewählter Einzugsgebiete in Österreich. Österreichische Wasser- und Abfallwirtschaft, 62 (1–2), 7–14. doi:10.1007/s00506-009-0154-9
  • Hosking, J.R.M. and Wallis, J.R., 1997. Regional frequency analysis. An approach based on L-moments. Cambridge: Cambridge University Press.
  • Hundecha, Y. and Merz, B., 2012. Exploring the relationship between changes in climate and floods using a model-based analysis. Water Resources Research, 48 (4). doi:10.1029/2011WR010527
  • Hundecha, Y., Pahlow, M., and Schumann, A., 2009. Modeling of daily precipitation at multiple locations using a mixture of distributions to characterize the extremes. Water Resources Research, (45. doi:10.1029/2008WR007453
  • Keef, C., Tawn, J., and Svensson, C., 2009. Spatial risk assessment for extreme river flows. Journal of the Royal Statistical Society: Series C (Applied Statistics), 58 (5), 601–618. doi:10.1111/j.1467-9876.2009.00672.x
  • Kleindienst, H., 1996. Erweiterung und Erprobung eines anwendungsorientierten hydrologischen Modells zur Gangliniensimulation in kleinen Wildbacheinzugsgebie. Diplomarbeit.
  • Kling, H., Fuchs, M., and Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264–277. doi:10.1016/j.jhydrol.2012.01.011
  • Kossieris, P., et al. 2016. A rainfall disaggregation scheme for sub-hourly time scales. Coupling a bartlett-lewis based model with adjusting procedures. Journal of Hydrology. doi:10.1016/j.jhydrol.2016.07.015
  • Koutsoyiannis, D., Onof, C., and Wheater, H.S., 2003. Multivariate rainfall disaggregation at a fine timescale. Water Resources Research, 39, 7. doi:10.1029/2002WR001600
  • Kyselý, J., 2008. A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. Journal of Applied Meteorology and Climatology, 47 (12), 3236–3251. doi:10.1175/2008JAMC1763.1
  • Lall, U. and Sharma, A., 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research, 32 (3), 679–693. doi:10.1029/95WR02966
  • Lamb, R., et al., 2016. Have applications of continuous rainfall–runoff simulation realized the vision for process-based flood frequency analysis? Hydrological Processes, 30 (14), 2463–2481. doi:10.1002/hyp.10882
  • Leander, R. and Buishand, T.A., 2009. A daily weather generator based on a two-stage resampling algorithm. Journal of Hydrology, 374 (3–4), 185–195. doi:10.1016/j.jhydrol.2009.06.010
  • Madsen, H., et al., 2014. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, 519, 3634–3650. doi:10.1016/j.jhydrol.2014.11.003
  • Maniak, U., 2010. Hydrologie und Wasserwirtschaft. Eine Einführung für Ingenieure. Berlin, Heidelberg: Springer-Verlag.
  • Mediero, L., Jiménez-Álvarez, A., and Garrote, L., 2010. Design flood hydrographs from the relationship between flood peak and volume. Hydrology and Earth System Sciences, 14 (12), 2495–2505. doi:10.5194/hess-14-2495-2010
  • Mélèse, V., Blanchet, J., and Molinié, G., 2018. Uncertainty estimation of Intensity–Duration–Frequency relationships. A regional analysis. Journal of Hydrology, 558, 579–591. doi:10.1016/j.jhydrol.2017.07.054
  • Merz, R., Blöschl, G., and Humer, G., 2008. National flood discharge mapping in Austria. Natural Hazards, 46 (1), 53–72. doi:10.1007/s11069-007-9181-7
  • Milly, P.C.D., et al., 2008. Climate change. Stationarity is dead. Whither water management? Science (New York, N.Y.), 319 (5863), 573–574. doi:10.1126/science.1151915
  • Montanari, A., 2011. Uncertainty of hydrological predictions. In: P. Wilderer, ed. Treatise on water science. Oxford: Academic Press, 459–478.
  • Moussa, R. and Chahinian, N., 2009. Comparison of different multi-objective calibration criteria using a conceptual rainfall–runoff model of flood events. Hydrology and Earth System Sciences, 13 (4), 519–535. doi:10.5194/hess-13-519-2009
  • Müller, H. and Haberlandt, U., 2018. Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology. Journal of Hydrology. 556, 847–864. doi:10.1016/j.jhydrol.2016.01.031
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nowak, K., et al., 2010. A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow. Water Resources Research, 46 (8). doi:10.1029/2009WR008530
  • Olsson, J., 1998. Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrology and Earth System Sciences, (2), 19–30. doi:10.5194/hess-2-19-1998
  • Plouffe, C.C.F., Robertson, C., and Chandrapala, L., 2015. Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. Environmental Modelling & Software, 67, 57–71. doi:10.1016/j.envsoft.2015.01.011
  • Pui, A., et al., 2012. A comparison of alternatives for daily to sub-daily rainfall disaggregation. Journal of Hydrology, 470-471, 138–157. doi:10.1016/j.jhydrol.2012.08.041
  • Raff, D.A., Pruitt, T., and Brekke, L.D., 2009. A framework for assessing flood frequency based on climate projection information. Hydrology and Earth System Sciences Discussions, 6 (2), 2005–2040. doi:10.5194/hessd-6-2005-2009
  • Rickenmann, D., 1996. Fliessgeschwindigkeit in Wildbächen und Gebirgsflüssen. Wasser Energie Luft, 88 (11/12), 298–304.
  • Robson, A. and Reed, D., 1999. Statistical procedures for flood frequency estimation. Wallingford: Institute of Hydrology.
  • Rogger, M., et al., 2012a. Runoff models and flood frequency statistics for design flood estimation in Austria? Do they tell a consistent story? Journal of Hydrology, 456-457, 30–43. doi:10.1016/j.jhydrol.2012.05.068
  • Rogger, M., et al., 2012b. Step changes in the flood frequency curve. Process controls. Water Resources Research, 48 (5), 147. doi:10.1029/2011WR011187
  • Rogger, M., et al., 2017. Land use change impacts on floods at the catchment scale. Challenges and opportunities for future research. Water Resources Research, 53 (7), 5209–5219. doi:10.1002/2017WR020723
  • Schneeberger, K., et al. 2017. A probabilistic framework for risk analysis of widespread flood events. A proof-of-concept study. Risk Analysis. doi:10.1111/risa.12863
  • Schneeberger, K., Rössler, O., and Weingartner, R., 2018. Spatial patterns of frequent floods in Switzerland. Hydrological Sciences Journal, 63 (6), 895–908. doi:10.1080/02626667.2018.1450505
  • Schneeberger, K. and Steinberger, T., 2018. Generation of spatially heterogeneous flood events in an alpine region—Adaptation and application of a multivariate modelling procedure. Hydrology, 5 (1), 5. doi:10.3390/hydrology5010005
  • Senfter, S., et al. 2009. Flood Forecasting for the River Inn. In: E. Veulliet, S. Johann, and H. Weck-Hannemann, eds. Sustainable natural hazard management in alpine environments. Berlin, Heidelberg: Springer Berlin Heidelberg, 35–67. doi:10.1007/978-3-642-03229-5_2
  • Serinaldi, F. and Grimaldi, S., 2011. Synthetic design hydrographs based on distribution functions with finite support. Journal of Hydrologic Engineering, 16 (5), 434–446. doi:10.1061/(ASCE)HE.1943-5584.0000339
  • Serinaldi, F. and Kilsby, C.G., 2017. A blueprint for full collective flood risk estimation. Demonstration for European river flooding. Risk Analysis: an Official Publication of the Society for Risk Analysis, 37 (10), 1958–1976. doi:10.1111/risa.12747
  • Sharma, A. and Srikanthan, S., 2006. Continuous rainfall simulation: a nonparametric alternative. In: Hydrology & water resources symposium: past, present and future 2006. Sandy Bay: Conference Design, 86–91.
  • Sivapalan, M., et al., 2005. Linking flood frequency to long-term water balance. Incorporating effects of seasonality. Water Resources Research, 41 (6), 1065. doi:10.1029/2004WR003439
  • Szolgay, J., et al., 2016. A regional comparative analysis of empirical and theoretical flood peak-volume relationships. Journal of Hydrology and Hydromechanics, 64 (4), 367–381. doi:10.1515/johh-2016-0042
  • Viglione, A. and Blöschl, G., 2009. On the role of storm duration in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 13 (2), 205–216. doi:10.5194/hess-13-205-2009
  • Viglione, A., Merz, R., and Blöschl, G., 2009. On the role of the runoff coefficient in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences Discussions, 6 (1), 627–665. doi:10.5194/hessd-6-627-2009
  • Viviroli, D., et al., 2009. Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – part II. Parameter regionalisation and flood estimation results. Journal of Hydrology, 377 (1–2), 208–225. doi:10.1016/j.jhydrol.2009.08.022
  • Vrac, M. and Naveau, P., 2007. Stochastic downscaling of precipitation: from dry events to heavy rainfalls. Water Resources Research, 43, 7. doi:10.1029/2006WR005308
  • Wagner, P.D., et al., 2012. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464-465, 388–400. doi:10.1016/j.jhydrol.2012.07.026
  • Weilguni, V., 2009. Bemessungsniederschläge in Österreich. In: G. Blöschl, ed. Hochwässer - Bemessung, Risikoanalyse und Vorhersage. ÖWAV- Seminar, Bundesamtsgebäude Wien, 26. Mai 2009. Wien: Techn. Univ. Wien, Inst. f. Wasserbau und Ingenieurhydrologie, 71–84.
  • Westra, S., et al., 2013. A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. Journal of Hydrology, 479, 86–99. doi:10.1016/j.jhydrol.2012.11.033