1,428
Views
15
CrossRef citations to date
0
Altmetric
Articles

An improved nonstationary model for flood frequency analysis and its implication for the Three Gorges Dam, China

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 845-855 | Received 22 Aug 2018, Accepted 19 Jan 2019, Published online: 09 May 2019

References

  • Aghakouchak, A., et al., 2013. Extremes in a changing climate. Trends in Antarctic Terrestrial & Limnetic Ecosystems, 65 (10), 954.
  • Ahn, K.H. and Palmer, R.N., 2016. Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut £river £basin. Hydrological Processes, 30 (19), 3518–3532. doi:10.1002/hyp.10876
  • Baldwin, M.P. and Dunkerton, T.J., 2001. Stratospheric harbingers of anomalous weather regimes. Science, 294 (5542), 581–584. doi:10.1126/science.1063315
  • Bender, J., Wahl, T., and Jensen, J., 2014. Multivariate design in the presence of non-stationarity. Journal of Hydrology, 514, 123–130. doi:10.1016/j.jhydrol.2014.04.017
  • Bracken, C., et al. 2018. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resources Research, 54 (1), 377–384. doi:10.1002/2017WR020403
  • Callau Poduje, A.C., Belli, A., and Haberlandt, U., 2014. Dam risk assessment based on univariate versus bivariate statistical approaches: A case study for Argentina. Hydrological Sciences Journal, 59 (12), 2216–2232. doi:10.1080/02626667.2013.871014
  • Chen, J., et al. 2013. Joint operation and dynamic control of flood limiting water levels for cascade reservoirs. Water Resources Management, 27 (3), 749–763. doi:10.1007/s11269-012-0213-z
  • Chen, X., et al. 2014. Climate information based streamflow and rainfall forecasts for Huai River Basin using hierarchical Bayesian modeling. Hydrology and Earth System Sciences, 18 (4), 1539–1548. doi:10.5194/hess-18-1539-2014
  • Cunderlik, J.M., et al. 2007. Local non-stationary flood-duration-frequency modelling. Canadian Water Resources Journal, 32 (1), 43–58. doi:10.4296/cwrj3201043
  • Dai, A. and Wigley, T.M.L., 2000. Global patterns of ENSO-induced precipitation. Geophysical Research Letters, 27 (9), 1283–1286. doi:10.1029/1999GL011140
  • Dai, Z.J., et al. 2010. Assessment of extreme drought and human interference on baseflow of the Yangtze River. Hydrological Processes, 24 (6), 749–757. doi:10.1002/hyp.7505
  • Debele, S.E., Strupczewski, W.G., and Bogdanowicz, E., 2017. A comparison of three approaches to non-stationary flood frequency analysis. Acta Geophysica, 65 (4), 863–883. doi:10.1007/s11600-017-0071-4
  • García, J.A., et al. 2018. A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain). Hydrological Sciences Journal, 63 (6), 878–894. doi:10.1080/02626667.2018.1457219
  • Genest, C., Ghoudi, K., and Rivest, L.P., 1995. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82 (3), 543–552. doi:10.1093/biomet/82.3.543
  • Genest, C. and Rivest, L.P., 1993. Statistical inference procedures for bivariate Archimedean copulas. Publications of the American Statistical Association, 88 (423), 1034–1043. doi:10.1080/01621459.1993.10476372
  • Gershunov, A. and Cayan, D.R., 2003. Heavy daily precipitation frequency over the contiguous United States: sources of climatic variability and seasonal predictability. Journal of Climate, 16 (16), 2752–2765. doi:10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2
  • Gong, D.Y. and Ho, C.H., 2002. Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophysical Research Letters, 29 (10), 78–88. doi:10.1029/2001GL014523
  • Grimaldi, S. and Serinaldi, F., 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29 (8), 1155–1167. doi:10.1016/j.advwatres.2005.09.005
  • Gu, X., et al. 2017. Nonstationarity-based evaluation of flood risk in the Pearl River basin: changing patterns, causes and implications. Hydrological Sciences Journal, 62 (2), 246–258. doi:10.1080/02626667.2016.1183774
  • Guo, H., et al., 2012. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. Journal of Hydrology, 416, 19–27. doi:10.1016/j.jhydrol.2011.11.027
  • Haylock, M.R., et al. 2006. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. Journal of Climate, 19 (8), 1490–1512. doi:10.1175/JCLI3695.1
  • Henley, B.J., et al., 2011. Climate-informed stochastic hydrological modeling: incorporating decadal-scale variability using paleo data. Water Resources Research, 47, W11509. doi:10.1029/2010WR010034
  • Jiang, C., et al. 2015. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrological Processes, 29 (6), 1521–1534. doi:10.1002/hyp.10288
  • Kwon, H.H., Brown, C., and Lall, U., 2008. Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophysical Research Letters, 35 (5), L05404. doi:10.1029/2007GL032220
  • Kwon, H.H., et al. 2009. Seasonal and annual maximum streamflow forecasting using climate information: application to the Three Gorges Dam in the Yangtze River basin, china. Hydrological Sciences Journal, 54 (3), 582–595. doi:10.1623/hysj.54.3.582
  • Kwon, H.H. and Lall, U., 2016. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resources Research, 52 (7), 5662–5675. doi:10.1002/2016WR018959
  • Lane, P.W., et al. 2005. Generalized additive models for location, scale and shape – discussion. Applied Statistics, 54, 544–554.
  • Li, J., et al. 2018. Nonstationary flood frequency analysis for annual flood peak and volume series in both univariate and bivariate domain. Water Resources Management, 32 (13), 4239–4252. doi:10.1007/s11269-018-2041-2
  • Lima, C.H.R., et al., 2015. A climate informed model for nonstationary flood risk prediction: application to Negro River at Manaus, Amazonia. Journal of Hydrology, 522, 594–602. doi:10.1016/j.jhydrol.2015.01.009
  • Liu, D., et al. 2014. Climate-informed low-flow frequency analysis using nonstationary modelling. Hydrological Processes, 29 (9), 2112–2124. doi:10.1002/hyp.10360
  • Mediero, L., Jimenez-Alvarez, A., and Garrote, L., 2010. Design flood hydrographs from the relationship between flood peak and volume. Hydrology and Earth System Sciences, 14 (12), 2495–2505. doi:10.5194/hess-14-2495-2010
  • Miller, A., 2002. Subset selection in regression. 2nd. New York: Chapman and Hall.
  • Milly, P., et al. 2008. Stationarity is dead. Science, 319 (5863), 573–574. doi:10.1126/science.1151915
  • Milly, P.C.D., et al., 2015. On critiques of “Stationarity is dead: whither water management”. Water Resources Research. doi:10.1002/2015WR017408
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part 1 — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nelsen, R.B., 2006. An introduction to copulas. New York: Springer.
  • Oliver, J.E., 2005. Hadley cell. In: J.E. Oliver, ed.. Encyclopedia of world climatology. Dordrecht: Springer Netherlands, 398.
  • Overland, J.E., 2013. Atmospheric science: long-range linkage. Nature Climate Change, 4 (1), 11–12. doi:10.1038/nclimate2079
  • Qiang, A., et al. 2013. Research on the changes of local weather and climate in the three gorges reservoir. Disaster Advances, 6, 498–504.
  • Reddy, M.J. and Ganguli, P., 2012. Bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resources Management, 26 (14), 3995–4018. doi:10.1007/s11269-012-0124-z
  • Renard, B., 2011. A Bayesian hierarchical approach to regional frequency analysis. Water Resources Research, 47 (11), 602–610. doi:10.1029/2010WR010089
  • Renard, B. and Lang, M., 2007. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Advances in Water Resources, 30 (4), 897–912. doi:10.1016/j.advwatres.2006.08.001
  • Requena, A.I., Mediero, L., and Garrote, L., 2013. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences, 17 (8), 3023–3038. doi:10.5194/hess-17-3023-2013
  • Salas, J.D. and Obeysekera, J., 2014. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 19 (3), 554–568. doi:10.1061/(ASCE)HE.1943-5584.0000820
  • Song, C., et al. 2005. The relation between Yichang drought and climate atmospheric circulation ed. The volume of papers of Chinese Meteorological Society in 2005. (in Chinese).
  • Song, Y. and Robinson, W.A., 2004. Dynamical mechanisms for stratospheric influences on the troposphere. Journal of the Atmospheric Sciences, 61 (14), 1711–1725. doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2
  • Steinschneider, S. and Brown, C., 2012. Forecast-informed low-flow frequency analysis in a Bayesian framework for the northeastern United States. Water Resources Research, 48 (10), 18132–18137. doi:10.1029/2012WR011860
  • Strupczewski, W.G., et al. 2016. Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geophysica, 64 (1), 206–236. doi:10.1515/acgeo-2015-0070
  • Strupczewski, W.G., et al., 2009. On seasonal approach to nonstationary flood frequency analysis. Physics & Chemistry of the Earth Parts A/B/C, 34(10-12), 612–618. doi:10.1016/j.pce.2008.10.067
  • Sun, S., et al. 2017. A Bayesian method for missing rainfall estimation using a conceptual rainfall–runoff model. Hydrological Sciences Journal, 62 (15), 2456–2468. doi:10.1080/02626667.2017.1390317
  • Sun, X., et al., 2014. A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on southeast Queensland rainfall. Journal of Hydrology, 512, 53–68. doi:10.1016/j.jhydrol.2014.02.025
  • Thorarinsdottir, T.L., et al. 2018. Bayesian regional flood frequency analysis for large catchments. Water Resources Research, 54 (9), 6929–6947. doi:10.1029/2017WR022460
  • Um, M.-J., et al. 2017. Modeling nonstationary extreme value distributions with nonlinear functions: an application using multiple precipitation projections for U.S. cities. Journal of Hydrology, 552 (Supplement C), 396–406. doi:10.1016/j.jhydrol.2017.07.007
  • Villarini, G., et al. 2009. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources, 32 (8), 1255–1266. doi:10.1016/j.advwatres.2009.05.003
  • Volpi, E. and Fiori, A., 2012. Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57 (8), 1506–1515. doi:10.1080/02626667.2012.726357
  • Wang, C., et al. 2017. Analysis of rainstorm induced by interaction between typhoon Chan-hom (2015) and cold air in northeast China. Plateau Meteorology, 36 (5), 1257–1566.
  • Willems, P., 2013. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations. Journal of Hydrology, 490, 126–133. doi:10.1016/j.jhydrol.2013.03.034
  • Wu, M.C., Chang, W.L., and Leung, W.M., 2004. Impacts of El Niño Southern Oscillation events on tropical cyclone landfalling activity in the western north pacific. Journal of Climate, 17 (6), 1419–1428. doi:10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2
  • Xiang, L., et al. 2010. Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. Journal of Hydrology, 391 (1), 124–132. doi:10.1016/j.jhydrol.2010.07.011
  • Xiong, L.H., et al. 2009. Indices for assessing the prediction bounds of hydrological models and application by generalized likelihood uncertainty estimation. Hydrological Sciences Journal, 54 (5), 852–871. doi:10.1623/hysj.54.5.852
  • Xu, K.Q., et al. 2007. Climate teleconnections to Yangtze River seasonal streamflow at the Three Gorges Dam, China. International Journal of Climatology, 27 (6), 771–780. doi:10.1002/joc.1437
  • Yang, F.L. and Lau, K.M., 2004. Trend and variability of china precipitation in spring and summer: linkage to sea-surface temperatures. International Journal of Climatology, 24 (13), 1625–1644. doi:10.1002/joc.1094
  • Yang, Y.P., et al. 2017. Influence of large reservoir operation on water-levels and flows in reaches below dam: case study of the Three Gorges Reservoir. Scientific Reports, 7, 14.
  • Zeng, H., et al. 2017. Nonstationary extreme flood/rainfall frequency analysis informed by large-scale oceanic fields for Xidayang Reservoir in North China. International Journal of Climatology, 37 (10), 3810–3820. doi:10.1002/joc.4955
  • Zhang, L. and Singh, V.P., 2006. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11 (2), 150–164. doi:10.1061/(ASCE)1084-0699(2006)11:2(150)
  • Zhang, Q., et al., 2015. Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River Basin, China. Journal of Hydrology, 527, 565–575. doi:10.1016/j.jhydrol.2015.05.029
  • Zhang, Y.Q., et al. 2017. Spatio-temporal characteristics and possible mechanisms of rainy season precipitation in Poyang Lake Basin, China. Climate Research, 72 (2), 129–140. doi:10.3354/cr01455
  • Zhi-Yao, H.E., et al., 2017. Annual average runoff ensemble forecast for Jinping I-stage hydropower station based on Elman neural network. Water Resources & Power, 35 (10), 25–28.
  • Zhou, M., et al. 2011. Insights from a joint analysis of Indian and Chinese monsoon rainfall data. Hydrology and Earth System Sciences, 15 (8), 2709–2715. doi:10.5194/hess-15-2709-2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.