584
Views
10
CrossRef citations to date
0
Altmetric
Articles

Temporal and spatial changes of blue water and green water in the Taihang Mountain Region, China, in the past 60 years

, , , , &
Pages 2040-2056 | Received 24 Feb 2018, Accepted 19 Jul 2018, Published online: 03 May 2019

References

  • Abbaspour, K.C., et al., 2009. Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45 (10), W10434–W10435. doi:10.1029/2008WR007615
  • Ajami, N.K., et al., 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298 (1–4), 112–135. doi:10.1016/j.jhydrol.2004.03.033
  • Arnold, J. and Allen, P., 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology, 176 (1–4), 57–77. doi:10.1016/0022-1694(95)02782-3
  • Chen, Y., et al., 2011. Liuxihe model and its modeling to river basin flood. Journal of Hydrologic Engineering, 16 (2), 33–50. doi:10.1061/(ASCE)HE.1943-5584.0000286
  • Chen, Y., Li, J., and Xu, H., 2016. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrology and Earth System Sciences, 20 (1), 375–392. doi:10.5194/hess-20-375-2016
  • Falkenmark, M., 1997. Meeting water requirements of an expanding world population. Philosophical Transactions of the Royal Society B: Biological Sciences. 352 (1356), 929–936.
  • Falkenmark, M., 1999. Forward to the Future: A Conceptual Framework for Water Dependence. Ambio, 28 (4), 356–361.
  • Falkenmark, M., Rockstr, M.J., and Karlberg, L., 2009. Present and future water requirements for feeding humanity. Food Security, 1 (1), 59–69. doi:10.1007/s12571-008-0003-x
  • Falkenmark, M. and Rockström, J., 2006. The new blue and green water paradigm: breaking new ground for water resources planning and management. Journal of Water Resources Planning & Management, 132 (3), 129–132. doi:10.1061/(ASCE)0733-9496(2006)132:3(129)
  • Falkenmark, M. and Rockström, J., 2010. Building water resilience in the face of global change: from a blue-only to a green-blue water approach to land-water management. Journal of Water Resources Planning and Management, 136 (6), 606–610. doi:10.1061/(ASCE)WR.1943-5452.0000118
  • Feng, X., et al., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6 (11). 1019–1022.
  • Gerten, D., et al., 2005. Contemporary “green” water flows: simulations with a dynamic global vegetation and water balance model. Physics and Chemistry of the Earth, Parts A/B/C, 30 (6–7), 334–338. doi:10.1016/j.pce.2005.06.002
  • Glavan, M., Pintar, M., and Volk, M., 2013. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments-lessons for the future. Hydrological Processes, 27 (26), 3964–3980. doi:10.1002/hyp.v27.26
  • Gupta, H.V., Sorooshian, S., and Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4 (2), 135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
  • Hoff, H., et al., 2010. Greening the global water system. Journal of Hydrology, 384 (3–4), 177–186. doi:10.1016/j.jhydrol.2009.06.026
  • Jia, Y., et al., 2001. Development of WEP model and its application to an urban watershed. Hydrological Processes, 15 (11), 2175–2194. doi:10.1002/(ISSN)1099-1085
  • Jia, Y., et al., 2006. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin. Journal of Hydrology, 331 (3–4), 606–629. doi:10.1016/j.jhydrol.2006.06.006
  • Jia, Y., et al., 2009. Distributed modeling of land surface water and energy budgets in the inland Heihe river basin of China.pdf. Hydrology and Earth System Sciences, 13, 1849–1866.
  • Jia, Y., et al., 2012. Attribution of water resources evolution in the highly water-stressed Hai River Basin of China. Water Resources Research, 48, 2. doi:10.1029/2010WR009275
  • Jia, Y., Kinouchi, T., and Yoshitani, J., 2005. Distributed hydrologic modeling in a partially urbanized agricultural watershed using water and energy transfer process model. Journal of Hydrologic Engineering, 10 (4), 253–263. doi:10.1061/(ASCE)1084-0699(2005)10:4(253)
  • Kendall, M., 1975. Rank Correlation Measures [M]. London: Charles Griffin.
  • Liang, X., et al., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres. 99 (D7), 14415–14428.
  • Liu, C. and Zhang, X., 2004. Causal analysis on actual water flow reduction in the mainstream of the Yellow River. Acta Geographica Sinica, 59 (3), 320–323. [in Chinese].
  • Liu, J., et al., 2007a. GEPIC – modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94 (2), 478–493. doi:10.1016/j.agsy.2006.11.019
  • Liu, J. and Yang, H., 2010. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. Journal of Hydrology, 384 (3–4), 187–197. doi:10.1016/j.jhydrol.2009.11.024
  • Liu, J., Zehnder, A.J.B., and Yang, H., 2007b. Historical trends in China‘s virtual water trade. Water International, 32 (1), 78–90. doi:10.1080/02508060708691966
  • Liu, X., et al., 2009. Quantifying the effect of land use and land cover changes on green water and blue water in northern part of China. Hydrology & Earth System Sciences, 13 (6), 735–747. doi:10.5194/hess-13-735-2009
  • Ma, Z., et al., 2008. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. Journal of Hydrology, 352 (3–4), 239–249. doi:10.1016/j.jhydrol.2007.12.022
  • Mekonnen, M.M. and Hoekstra, A.Y., 2010. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 14 (7), 1259–1276. doi:10.5194/hess-14-1259-2010
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Oki, T. and Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313 (5790), 1068–1072. doi:10.1126/science.1128845
  • Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Applied Statistics, 28 (2), 126–135. doi:10.2307/2346729
  • Postel, S.L., Daily, G.C., and Ehrlich, P.R., 1996. Human appropriation of renewable freshwater. Science, 271 (5250), 785–788.
  • Rockström, J., 1999. On-farm green water estimates as a tool for increased food production in water scarce regions. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24 (4), 375–383.
  • Rost, S., et al., 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44 (9), 137–148. doi:10.1029/2007WR006331
  • Schmitz, C., et al., 2013. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resources Research, 49 (6), 3601–3617. doi:10.1002/wrcr.20188
  • Schuol, J., et al., 2008. Modeling blue and green water availability in Africa. Water Resources Research, 44, 7. doi:10.1029/2007WR006609
  • Siebert, S. and Döll, P., 2008. The Global Crop Water Model (GCWM): documentation and first results for irrigated crops. Frankfurt am Main: Germany: Institute of Physical Geography, University of Frankfurt.
  • Siebert, S. and Döll, P., 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 384 (3–4), 198–217. doi:10.1016/j.jhydrol.2009.07.031
  • Sun, C. and Ren, L., 2013. Assessment of surface water resources and ET in the Haihe River basin of China using SWAT model. Hydrological Processes, 27 (8), 1200–1222. doi:10.1002/hyp.9213
  • Veettil, A.V. and Mishra, A.K., 2016. Water security assessment using blue and green water footprint concepts. Journal of Hydrology, 542, 589–602. doi:10.1016/j.jhydrol.2016.09.032
  • Vörösmarty, C.J., et al., 2000. Global water resources: vulnerability from climate change and population growth. Science, 289 (5477), 284–288.
  • Vörösmarty, C.J., et al., 2010. Global threats to human water security and river biodiversity. Nature, 467 (7315), 555–561. doi:10.1038/nature09440
  • Wang, Z.M., And, B.O., and De Smedt, F., 1996. A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Physics and Chemistry of the Earth, 21 (3), 189–193. doi:10.1016/S0079-1946(97)85583-8
  • Xia, J., et al., 2004. Water security problem and research perspective in North China. Journal of Natural Resources, 19 (5), 550–560.
  • Xia, J., et al., 2005. Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China Series D: Earth Sciences. 48 (6), 713.
  • Xia, J., et al., 2007. Towards better water security in North China. Water Resources Management, 21 (1), 233–247. doi:10.1007/s11269-006-9051-1
  • Xu, J., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 106–117. doi:10.1080/02626667.2012.746462
  • Xu, X., et al., 2014. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. Journal of Hydrology, 510 (6), 530–540. doi:10.1016/j.jhydrol.2013.12.052
  • Xu, Z.X., et al., 2005. Long-term trend analysis for precipitation in Asian Pacific FRIEND river basins. Hydrological Processes, 19 (18), 3517–3532. doi:10.1002/(ISSN)1099-1085
  • Xu, Z.X., Takeuchi, K., and Ishidaira, H., 2003. Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279 (1–4), 144–150. doi:10.1016/S0022-1694(03)00178-1
  • Yang, D., Herath, S., and Musiake, K., 1998. Development of a geomorphology-based hydrological model for large catchments. Proceedings of Hydraulic Engineering, 42, 169–174. doi:10.2208/prohe.42.169
  • Yang, D., Zhang, S., and Xu, X., 2015. Attribution analysis for runoff decline in Yellow River Basin during recent fifty years based on Budyko hypothesis. Sci Sin Tech, 45 (10), 1024–1034. [in Chinese].
  • Yang, H. and Zehnder, A., 2007. Virtual water”: an unfolding concept in integrated water resources management. Water Resources Research, 43 (12). doi:10.1029/2007WR006048
  • Zang, C., et al., 2015. Influence of human activities and climate variability on green and blue water provision in the Heihe River Basin, NW China. Journal of Water and Climate Change, jwc2015194 doi:10.2166/wcc.2015.194.
  • Zhang, K., et al., 2009. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. Journal of Hydrology, 379 (1), 92–110. doi:10.1016/j.jhydrol.2009.09.047
  • Zhang, K., et al., 2010. A continuous satellite-derived global record of land surface ET from 1983 to 2006. Water Resources Research, 46 (9), 109–118. doi:10.1029/2009WR008800
  • Zhang, K., et al., 2015. Vegetation greening and climate change promote multidecadal rises of global land ET. Scientific Reports, 5 (2), 75–77.
  • Zhang, W., et al., 2014. Spatiotemporal change of blue water and green water resources in the headwater of Yellow River Basin, China. Water Resources Management, 28 (13), 4715–4732. doi:10.1007/s11269-014-0769-x
  • Zhang, X., et al., 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research, 44, 7. doi:10.1029/2007WR006711
  • Zhuo, L., et al., 2016. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources, 87, 29–41. doi:10.1016/j.advwatres.2015.11.002
  • Zuo, D., et al., 2012. Spatiotemporal variations and abrupt changes of potential ET and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrological Processes, 26 (8), 1149–1160. doi:10.1002/hyp.8206
  • Zuo, D., et al., 2015. Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes, 29 (8), 1942–1955. doi:10.1002/hyp.v29.8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.