502
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hybrid method to update the design flood shape for spillway operation in a dam: case study of the Huites Dam, Mexico

, , , , , & show all
Pages 934-947 | Received 31 Oct 2018, Accepted 13 Feb 2019, Published online: 20 May 2019

References

  • Aparicio Mijares, F.J., 2012. Fundamentos de Hidrología de Superficie (Surface hydrology fundamentals, in Spanish). México, D.F: Limusa, 303.
  • Arganis, J.M.L., Herrera, A.J.L., and Domínguez, M.R., 2013. Determinación de eventos de diseño de funciones bivariadas usando el método de la bisección (Determination of design events of bivariate functions using the bisection method, in Spanish). Ingeniare, 21 (2), 293–300. doi:10.4067/S0718-33052013000200012
  • Arganis Juárez, M.L., De Luna Cruz, F., and Preciado Jiménez, M., 2017. Método híbrido para construir hidrogramas de diseño con datos de caudal de pico y volumen (Hybrid method to build design hydrograms with peak and volume flow data, in Spanish). Memorias de las V Jornadas de Ingeniería del Agua JIA, 25 Y 26 de octubre, La Coruña, España, 1–11.
  • Arganis Juárez, M.L. and Preciado Jiménez, M., 2017. Determinación de la avenida de diseño de la cuenca total de Aguamilpa con análisis bivariado e hidrogramas normalizados (Determination of the design flood of the total basin of Aguamilpa with bivariate analysis and standardized hydrographs, in Spanish). Memorias del XXIV Congreso Nacional de Hidráulica, AMH, Acapulco, Gro, México, 1–6.
  • Bianucci, P., et al., 2013. Risk-based methodology for parameter calibration of a reservoir flood control model. Natural Hazards and Earth System Sciences, 13 (4), 965–981. doi:10.5194/nhess-13-965-2013
  • Candela, A., Brigandì, G., and Aronica, G.T., 2014. Estimation of synthetic flood design hydrographs using a distributed rainfall–runoff model coupled with a copula-based single storm rainfall generator. Natural Hazards and Earth System Sciences, 14, 1819–1833. doi:10.5194/nhess-14-1819-2014
  • Cavalcanti, D.L.O. and Reis, L.F.R., 2017. Maximum design flow estimates for large basins using the Local Frequency Analysis (LFA) and the Most Probable Maximum Hydrograph (MPMH) methods – a critical analysis. Water Resources Management, 31, 127–141. doi:10.1007/s11269-016-1514-4
  • CEMARCOSIN,2017. Available from: http://laipsinaloa.gob.mx/images/stories/CEMARCOSIN/EMBALSES%20FINAL(1).pdf [Accessed 22 April 2019].
  • Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Applied hydrology. New York: McGraw-Hill.
  • Domínguez, M.R., et al., 2015. Manual de Diseño de Obras Civiles. Cap. A.1.8 Sección A. Hidrotecnia Tema 1: hidrología. México: Comisión Federal de Electricidad.
  • Domínguez, M.R. and Arganis, J.M.L., 2012. Validation of methods to estimate design discharge flow rates for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57 (3), 460–478. doi:10.1080/02626667.2012.665993
  • Domínguez, M.R., et al., 2009. Calculation of Bivariate Double Gumbel probability density function via a Genetic Algorithm: application to Huites dam basin. Journal of Flood Engineering (JFE), 1 (1), 293–300. Available from: http://serialsjournals.com/articles.php?volumesno_id=1171&journals_id=281&volumes_id=1069
  • Dueñas, P.D., 2017. Estimación de avenidas de diseño para la presa Infiernillo, a partir de métodos estadísticos y espectrales (Estimation of design floods for the Infiernillo dam, based on statistical and spectral methods, in Spanish). Papiit Project. Master‘s Thesis. Posgrado en Ingeniería, Facultad de Ingeniería, UNAM., México.
  • Fuentes, M.O., et al., 2015a. Maximización de la función de verosimilitud de distribuciones de probabilidad usando algoritmos genéticos (Maximization of the probability distributions likelihood using genetic algorithms, in Spanish). Revista Ingeniería del Agua, Universidad Politécnica de Valencia, 19 (1), 17–29. doi:10.4995/ia.2015.3225
  • Fuentes, M.O.A., et al., 2015. B. Estimate of design hydrographs for the Angostura dam, Sonora, using statistical and spectral methods. Water Resources Management, 29, 4021–4043. doi:10.1007/s11269-015-1043-6
  • Gabriel-Martin, I., et al., 2017. Influence of initial reservoir level and gate failure in dam safety analysis. Stochastic approach. Journal of Hydrology, 550, 669–684. doi:10.1016/j.jhydrol.2017.05.032
  • Genest, C. and Favre, A.C., 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347–368. doi:10.1061/(ASCE)1084-0699(2007)12:4(347)
  • Goldberg, D.E., 1989. Genetic algorithms in search, optimization & machine learning. Boston, MA: Addison-Wesley Longman Publishing Co.
  • Hassini, S. and Guo, Y., 2017. Derived flood frequency distributions considering individual event hydrograph shapes. Journal of Hydrology, 547, 296–308. doi:10.1016/j.jhydrol.2017.02.003
  • Hiemstra, L.A.V. and Francis, D.M., 1979. The run hydrograph. In: Theory and application for flood predictions. Pretoria, South Africa: Water Research Commission, 63.
  • Holland, J.H., 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.
  • Jiménez, E.M., 1996. Programa AX. Área de riesgos hidrometeorológicos (AX program. Area of hydrometeorological risks, in Spanish). México: Centro 14, Centro Nacional de Prevención de Desastres.
  • Jiménez, E.M., 2000. Diseño Integral de Vertedores (Integral design of spillways, in Spanish). Master‘s Thesis. División de Estudios de Posgrado, Facultad de Ingeniería, UNAM., México.
  • Mediero, L., Jiménez, A., and Garrote, L., 2010. Design flood hydrographs from the relationship between flood peak and volume. International Workshop on Advances in Statistical Hydrology, May 23–25, Taormina, Italy. 1–10. Available from: http://www.risorseidriche.dica.unict.it/Sito_STAHY2010_web/pdf_papers/MedieroL_GarroteL_Jim%E9nezA.pdf [Accessed 23 January 2018]
  • Michailidi, E.M. and Bacchi, B., 2017. Dealing with uncertainty in the probability of overtopping of a flood mitigation dam. Hydrology and Earth System Sciences, 21 (5), 2497–2507. doi:10.5194/hess-21-2497-2017
  • Preciado, J.M., et al., 2010. Análisis entre escurrimientos y sedimentos históricos en la cuenca del río Apatlaco, mor (Analysis between historical runoff and sediments in the Apatlaco river basin, mor, in Spanish). Revista Aqua-Lac UNESCO-PHI. 2, 39–44. Available from: http://unesdoc.unesco.org/images/0021/002115/211564m.pdf
  • Ramírez, A.I. and Aldama, A.A., 2000. Análisis de frecuencias conjunto para la estimación de avenidas de diseño (Joint frequency analysis for estimating design floods, in Spanish). Morelos, México: AMH, IMTA.
  • Requena, A.I., Mediero, L., and Garrote, L., 2013. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences, 17, 3023–3038. doi:10.5194/hess-17-3023-2013
  • Salvadori, G., et al., 2007. Extremes in nature: an approach using copulas. Vol. 56. Berlin: Springer Science & Business Media.
  • Salvadori, G., et al., 2016. A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research, 52 (5), 3701–3721. doi:10.1002/2015WR017225
  • Schumann, A., 2017. Flood safety versus remaining risks-options and limitations of probabilistic concepts in flood management. Water Resources Management, 31 (10), 3131–3145. doi:10.1007/s11269-017-1700-z
  • Serinaldi, F., 2013. An uncertain journey around the tails of multivariate hydrological distributions. Water Resources Research, 49 (10), 6527–6547. doi:10.1002/wrcr.20531
  • Serinaldi, F., 2015. Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 29 (4), 1179–1189. doi:10.1007/s00477-014-0916-1
  • Serinaldi, F. and Grimaldi, S., 2011. Synthetic design hydrographs based on distribution functions with finite support. Journal of Hydrologic Engineering, ASCE, 16 (5), 434–446. doi:10.1061/(ASCE)HE.1943-5584.0000339
  • Sordo-Ward, A., et al., 2017. A parametric flood control method for dams with gate-controlled spillways. Water, 9 (4), 237. doi:10.3390/w9040237
  • Sui, S., 2005. Estimation of design flood hydrograph for an ungauged watershed. Water Resources Management, 19, 813–830. doi:10.1007/s11269-005-6812-1
  • Tomirotti, M. and Mignosa, P.A., 2017. Methodology to derive synthetic design hydrographs for river flood management. Journal of Hydrology, 555, 736–743. doi:10.1016/j.jhydrol.2017.10.036
  • Vázquez, C.M.T., 1995. Procedimiento sistemático para el cálculo de la avenida de diseño en presas con gran capacidad de regulación (Systematic procedure for the calculation of the design flood in dams with great regulation capacity, In Spanish). Master‘s Thesis, DEPFI. UNAM.
  • Volpi, E. and Fiori, A., 2012. Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57 (8), 1506–1515. doi:10.1080/02626667.2012.726357
  • Volpi, E. and Fiori, A., 2014. Hydraulic structures subject to bivariate hydrological loads: return period, design, and risk assessment. Water Resources Research, 50 (2), 885–897. doi:10.1002/2013WR014214
  • Yin, J.B., et al., 2018. Uncertainty analysis of bivariate design flood estimation and its impacts on reservoir routing. Water Resources Management, 32 (5), 1795–1809. doi:10.1007/s11269-018-1904-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.