726
Views
10
CrossRef citations to date
0
Altmetric
Articles

Streamflow prediction under extreme data scarcity: a step toward hydrologic process understanding within severely data-limited regions

ORCID Icon &
Pages 1038-1055 | Received 10 Oct 2018, Accepted 26 Apr 2019, Published online: 13 Jun 2019

References

  • Alipour, M.H. and Kibler, K.M., 2018. A framework for streamflow prediction in the world’s most severely data-limited regions: test of applicability and performance in a poorly-gauged region of China. Journal of Hydrology, 557, 41–54.
  • ArcGIS website, 2017. HydroSHEDS (RIV) - Europe river network (stream lines) at 30s resolution (Data basin dataset), 2010. Available from: https://databasin.org/datasets/17c21f42e65545589e000c339734f857 [Accessed 2 November 2017].
  • Arsenault, R. and Brissette, F., 2016. Multi-model averaging for continuous streamflow prediction in ungauged basins. Hydrological Sciences Journal, 61 (13), 2443–2454. doi:10.1080/02626667.2015.1117088
  • Australian Bureau of Meteorology website, 2017. Precipitation data owner: Queensland - Department of Natural Resources and Mines (downloaded from TERN AusCover website (2017)). Available from: http://data.auscover.org.au/xwiki/bin/view/Product+pages/Product+User+Page+Melbourne+2 [Accessed 26 November 2017].
  • Batjes, N.H., 2015. World soil property estimates for broad-scale modelling (WISE30sec, Ver. 1.0). Report 2015/01, ISRIC—World Soil Information. Wageningen. Available from: http://www.isric.org/data/data-download [Accessed 10 November 2016].
  • Beven, K., 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16 (1), 41–51. doi:10.1016/0309-1708(93)90028-E
  • Beven, K., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320 (1–2), 18–36. doi:10.1016/j.jhydrol.2005.07.007
  • Blöschl, G., et al., eds., 2013. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge: Cambridge University Press.
  • Chinese Ministry of Hydrology, 1970. Hydrologic yearbook: Yunnan-Tibet International Rivers District, District 9 Region 2 1965, [in Chinese]. Beijing, China: Ministry of Hydrology.
  • Chinese Ministry of Hydrology, 1971. Hydrologic yearbook: Yunnan-Tibet International Rivers District, District 9 Region 2 1966, [in Chinese]. Beijing, China: Ministry of Hydrology.
  • Chinese Ministry of Hydrology, 1974. Hydrologic yearbook: Yunnan-Tibet International Rivers District, District 9 Region 2 1972, [in Chinese]. Beijing, China: Ministry of Hydrology.
  • Chinese Ministry of Hydrology, 1977. Hydrologic yearbook: Yunnan-Tibet International Rivers District, District 9 Region 2 1978, [in Chinese]. Beijing, China: Ministry of Hydrology.
  • Chinese Ministry of Hydrology, 1982. Hydrologic yearbook: Yunnan-Tibet International Rivers District, District 9 Region 2 1979, [in Chinese]. Beijing, China: Ministry of Hydrology.
  • DeFries, R.S. and Hansen, M., 2010. ISLSCP II University of Maryland global land cover classifications, 1992-1993. In: F. G. Hall, et al., eds. ISLSCP initiative II collection. Data set. Oak Ridge, Tennessee: Oak Ridge National Laboratory Distributed Active Archive Center. Available from: http://daac.ornl.gov/] doi:10.3334/ORNLDAAC/969
  • Fan, Y. and van Den Dool, H., 2008. A global monthly land surface air temperature analysis for 1948-present. Journal of Geophysical Research: Atmospheres, 113 (D1). doi:10.1029/2007JD008470
  • Forsythe, W.C., et al., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80 (1), 87–95. doi:10.1016/0304-3800(94)00034-F.
  • Geoscience Australia, 2010. Geoscience Australia, 3 second SRTM Digital Elevation Model (DEM) v01. Bioregional Assessment Source Dataset. Available from: http://data.bioregionalassessments.gov.au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a [Accessed 27 November 2017].
  • Gibbs, M.S., Maier, H.R., and Dandy, G.C., 2012. A generic framework for regression regionalization in ungauged catchments. Environmental Modelling & Software, 27, 1–14. doi:10.1016/j.envsoft.2011.10.006
  • Hannah, D.M., et al., 2011. Large-scale river flow archives: importance, current status and future needs. Hydrological Processes, 25 (7), 1191–1200. doi:10.1002/hyp.7794.
  • Haylock, M.R., et al., 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research D: Atmospheres, 113, D20119. doi:10.1029/2008JD10201.
  • Henck, A.H., et al., 2010. Monsoon control of effective discharge, Yunnan and Tibet. Geology, 38, 975–978. doi:10.1130/G31444.1.
  • Hengl, T., et al., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12 (2), e0169748. doi:10.1371/journal.pone.0169748.
  • Heřmanovský, M., et al., 2017. Regionalization of runoff models derived by genetic programming. Journal of Hydrology, 547, 544–556. doi:10.1016/j.jhydrol.2017.02.018.
  • Hrachowitz, M., et al., 2013. A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 58 (6), 1198–1255. doi:10.1080/02626667.2013.803183.
  • Hughes, D.A., 2016. Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 30 (14), 2419–2431. doi:10.1002/hyp.v30.14
  • Jayawardena, A.W. and Zhou, M.C., 2000. A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang model. Journal of Hydrology, 227 (1–4), 93–113. doi:10.1016/S0022-1694(99)00173-0
  • Kamali, B. and Mousavi, S.J., 2014. Automatic calibration of HEC-HMS model using multi-objective fuzzy optimal models. Civil Engineering Infrastructures Journal, 47 (1), 1–12.
  • Kibler, K.M. and Alipour, M.H., 2017. Flow alteration signatures of diversion hydropower: an analysis of 32 rivers in southwestern China. Ecohydrology, 10 (5), e1846. doi:10.1002/eco.v10.5
  • Koutsouris, A.J., Seibert, J., and Lyon, S.W., 2017. Utilization of global precipitation datasets in data limited regions: A case study of Kilombero Valley, Tanzania. Atmosphere, 8 (12), 246. doi:10.3390/atmos8120246
  • Lanfear, K.J. and Hirsch, R.M., 1999. USGS study reveals a decline in long-record streamgages. Eos, Transactions American Geophysical Union, 80 (50), 605–607. doi:10.1029/99EO00406
  • Lavers, D.A., 2011. Seasonal hydrological prediction in Great Britain–an assessment. Doctoral dissertation. University of Birmingham.
  • Lehner, B., Verdin, K., and Jarvis, A., 2006. HydroSHEDS technical documentation. World wildlife fund US. Washington, DC. Available from: http://hydrosheds.cr.usgs.gov [Accessed 9 February 2018].
  • Lehner, B., Verdin, K., and Jarvis, A., 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union, 89 (10), 93–94. doi:10.1029/2008EO100001
  • Mathworks, 2016. MATLAB software.  Natick, MA: The MathWorks, Inc.
  • McIntyre, N., et al., 2004. Tools and approaches for evaluating uncertainty in streamflow predictions in ungauged UK catchments. Osnabrück, Germany: International Congress on Environmental Modelling and Software.
  • McIntyre, N., et al., 2005. Ensemble predictions of runoff in ungauged catchments. Water Resources Research, 41 (12). doi:10.1029/2005WR004289.
  • Mekong River Commission website, 2018. Available from: http://www.mrcmekong.org/[Accessed 14 October 2016].
  • Merz, R. and Blöschl, G., 2004. Regionalisation of catchment model parameters. Journal of Hydrology, 287 (1–4), 95–123. doi:10.1016/j.jhydrol.2003.09.028
  • Merz, R., Parajka, J., and Blöschl, G., 2009. Scale effects in conceptual hydrological modeling. Water Resources Research, 45 (9). doi:10.1029/2009WR007872
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research, 47 (2). doi:10.1029/2010WR009505
  • Moore, R.J., 1985. The probability-distributed principle and runoff production at point and basin scales. Hydrological Sciences Journal, 30 (2), 273–297. doi:10.1080/02626668509490989
  • Moore, R.J., 1999. Real-time flood forecasting systems: perspectives and prospects. In: R. Casale and C. Margottini, eds. Floods and landslides: integrated risk assessment. Springer Berlin Heidelberg, 147–189.
  • Morris, D.G. and Flavin, R.W., 1990. A digital terrain model for hydrology. In: Proc 4th International Symposium on Spatial Data Handling, Vol. 1, 23–27 July Zurich, 250–262.
  • Morris, D.G. and Flavin, R.W., 1994. Sub-set of UK 50 m by 50 m hydrological digital terrain model grids. Wallingford: NERC, Institute of Hydrology.
  • NOAA/OAR/ESRL PSD website, 2017. Boulder, Colorado, USA. Available from: https://www.esrl.noaa.gov/psd/[Accessed 27 December 2017].
  • Oudin, L., et al., 2008. Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44 (3). doi:10.1029/2007WR006240.
  • Parada, L.M. and Liang, X., 2010. A novel approach to infer streamflow signals for ungauged basins. Advances in Water Resources, 33 (4), 372–386. doi:10.1016/j.advwatres.2010.01.003
  • Parajka, J., et al., 2015. The role of station density for predicting daily runoff by top-kriging interpolation in Austria. Journal of Hydrology and Hydromechanics, 63 (3), 228–234. doi:10.1515/johh-2015-0024.
  • Parajka, J., Blöschl, G., and Merz, R., 2007a. Regional calibration of catchment models: potential for ungauged catchments. Water Resources Research, 43 (6). doi:10.1029/2006WR005271
  • Parajka, J., Merz, R., and Blöschl, G., 2005. A comparison of regionalisation methods for catchment model parameters. Hydrology and Earth System Sciences Discussions, 9 (3), 157–171. doi:10.5194/hess-9-157-2005
  • Parajka, J., Merz, R., and Blöschl, G., 2007b. Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Processes, 21 (4), 435–446. doi:10.1002/(ISSN)1099-1085
  • Peñas, F.J., et al., 2014. The influence of methodological procedures on hydrological classification performance. Hydrology and Earth System Sciences, 18, 3393–3409. doi:10.5194/hess-18-3393-2014.
  • Perks, A., Winkler, T., and Stewart, B., 1996. The adequacy of hydrological networks: A global assessment, Rep. WMO-740, World Meteorological Organization, Geneva, Switzerland.
  • Post, D.A., 2009. Regionalizing rainfall–runoff model parameters to predict the daily streamflow of ungauged catchments in the dry tropics. Hydrology Research, 40 (5), 433–444. doi:10.2166/nh.2009.036
  • Post, D.A. and Jakeman, A.J., 1999. Predicting the daily streamflow of ungauged catchments in SE Australia by regionalising the parameters of a lumped conceptual rainfall-runoff model. Ecological Modelling, 123 (2–3), 91–104. doi:10.1016/S0304-3800(99)00125-8
  • Richter, B.D., et al., 1997. How much water does a river need? Freshwater Biology, 37, 231–249. doi:10.1046/j.1365-2427.1997.00153.x.
  • Seibert, J. and McDonnell, J.J., 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research, 38 (11). doi:10.1029/2001WR000978
  • Seibert, J. and McDonnell, J.J., 2013. Gauging the ungauged basin: relative value of soft and hard data. Journal of Hydrologic Engineering, 20 (1), p. A4014004.
  • Shiklomanov, A.I., Lammers, R.B., and Vörösmarty, C.J., 2002. Widespread decline in hydrological monitoring threatens pan‐Arctic research. Eos, Transactions American Geophysical Union, 83 (2), 13–17. doi:10.1029/2002EO000007
  • Sugeno, M., 1985. An introductory survey of fuzzy control. Information Sciences, 36 (1–2), 59–83. doi:10.1016/0020-0255(85)90026-X
  • Swain, J.B. and Patra, K.C., 2017. Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 554, 420–433. doi:10.1016/j.jhydrol.2017.08.054
  • Tegegne, G., Park, D.K., and Kim, Y.O., 2017. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38 (1), 55–94. doi:10.2307/210739
  • UK National River Flow Archive website, 2017. Available from: https://nrfa.ceh.ac.uk [Accessed 3 November 2017].
  • US Census Bureau website, 2018. Cartographic boundary shapefiles - states. Available from: https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html [Accessed 9 February 2018].
  • USGS website, 2017a. USGS water data for the nation. Available from: https://www.usgs.gov [Accessed 27 December 2017].
  • USGS website, 2017b. Watershed Boundary Dataset (WBD). Watershed boundary dataset for California. Available from: http://datagateway.nrcs.usda.gov [Accessed 27 December 2017].
  • van Emmerik, T., et al., 2015. Predicting the ungauged basin: model validation and realism assessment. Frontiers in Earth Science, 3 (62). doi:10.3389/feart.2015.00062.
  • Vandewiele, G.L. and Elias, A., 1995. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 170 (1–4), 277–291. doi:10.1016/0022-1694(95)02681-E
  • Vörösmarty, C., et al., 2001. Global water data: A newly endangered species. Eos, Transactions American Geophysical Union, 82 (5), 54–58. doi:10.1029/01EO00031.
  • Vrugt, J.A., et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39 (8). doi:10.1029/2002WR001746.
  • Wagener, T., et al., 2013. A synthesis framework for runoff prediction in ungauged basins. chapt, 2, pp.11–28.
  • Wang, D., 2018. A new probability density function for spatial distribution of soil water storage capacity leads to the SCS curve number method. Hydrology and Earth System Sciences, 22 (12), 6567–6578. doi:10.5194/hess-22-6567-2018
  • Wang, D., Chen, Y., and Cai, X., 2009. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resources Research, 45 (11). doi:10.1029/2008WR007401
  • World Meteorological Organization, 2008. Guide to hydrological practices volume I, hydrology – from measurement to hydrological information. 6th ed. WMO-No. 168.
  • Yadav, M., Wagener, T., and Gupta, H., 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 30 (8), 1756–1774. doi:10.1016/j.advwatres.2007.01.005
  • Yang, T.C., et al., 2004. Application of fuzzy multiobjective function on storm-event rainfall-runoff model calibration. Journal of Hydrologic Engineering, 9 (5), 440–445. doi:10.1061/(ASCE)1084-0699(2004)9:5(440).
  • Yapo, P.O., 1996. A multiobjective global optimization algorithm with application to calibration of hydrologic models. PhD dissertation. University of Arizona, Tucson.
  • Yapo, P.O., Gupta, H.V., and Sorooshian, S., 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204 (1–4), 83–97. doi:10.1016/S0022-1694(97)00107-8
  • Yasutomi, N., Hamada, A., and Yatagai, A., 2011. Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environmental Research, 15 (2), 165–172.
  • Yatagai, A., et al., 2012. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93 (9), 1401–1415. doi:10.1175/BAMS-D-11-00122.1.
  • Yu, P.S. and Yang, T.C., 2000. Fuzzy multi-objective function for rainfall-runoff model calibration. Journal of Hydrology, 238 (1–2), 1–14. doi:10.1016/S0022-1694(00)00317-6
  • Zhang, Z., et al., 2008. Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization. Water Resources Research, 44 (12). doi:10.1029/2008WR006833.
  • Zhou, X., et al., 2017. Remapping annual precipitation in mountainous areas based on vegetation patterns: a case study in the Nu River basin. Hydrology and Earth System Sciences, 21 (2), 999–1015. doi:10.5194/hess-21-999-2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.