632
Views
3
CrossRef citations to date
0
Altmetric
Articles

Regional assimilation of in situ observed soil moisture into the VIC model considering spatial variability

, , , , &
Pages 1982-1996 | Received 03 Oct 2018, Accepted 16 Jul 2019, Published online: 03 Oct 2019

References

  • Alvarez-Garreton, C., et al., 2015. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes. Hydrology and Earth System Sciences, 19 (4), 1659–1676. doi:10.5194/hess-19-1659-2015
  • Aubert, D., Loumagne, C., and Oudin, L., 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. Journal of Hydrology, 280 (1–4), 145–161. doi:10.1016/s0022-1694(03)00229-4
  • Boone, A., et al., 2004. The Rhone-aggregation land surface scheme intercomparison project: an overview. Journal of Climate, 17 (1), 187–208. doi:10.1175/1520-0442(2004)017<0187:trlssi>2.0.co;2
  • Brocca, L., et al., 2010. ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sensing of Environment, 114 (11), 2745–2755. doi:10.1016/j.rse.2010.06.009
  • Brocca, L., et al., 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sensing of Environment, 115 (12), 3390–3408. doi:10.1016/j.rse.2011.08.003
  • Chen, F., et al., 2011a. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources, 34 (4), 526–536. doi:10.1016/j.advwatres.2011.01.011
  • Chen, Y., et al., 2011b. Liuxihe model and its modeling to river basin flood. Journal of Hydrologic Engineering, 16 (1), 33–50. doi:10.1061/(ASCE)HE.1943-5584.0000286
  • Chen, Y., Li, J., and Xu, H., 2016. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrology and Earth System Sciences, 20, 375–392. doi:10.5194/hess-20-375-2016
  • Crow, W.T., et al., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Reviews of Geophysics, 50. doi:10.1029/2011rg000372
  • Crow, W.T. and van den Berg, M.J., 2010. An improved approach for estimating observation and model error parameters in soil moisture data assimilation. Water Resources Research, 46. doi:10.1029/2010wr009402
  • De Lannoy, G.J.M., et al., 2007. Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resources Research, 43 (9). doi:10.1029/2006wr005449
  • de Rosnay, P., et al., 2013. A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quarterly Journal of the Royal Meteorological Society, 139 (674), 1199–1213. doi:10.1002/qj.2023
  • Dorigo, W.A., et al., 2010. Error characterisation of global active and passive microwave soil moisture datasets. Hydrology and Earth System Sciences, 14 (12), 2605–2616. doi:10.5194/hess-14-2605-2010
  • Dorigo, W.A., et al., 2015. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 162, 380–395. doi:10.1016/j.rse.2014.07.023
  • Draper, C., et al., 2011. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrology and Earth System Sciences, 15 (12), 3829–3841. doi:10.5194/hess-15-3829-2011
  • Draper, C.S., et al., 2012. Assimilation of passive and active microwave soil moisture retrievals. Geophysical Research Letters, 39 (4), 127–145. doi:10.1029/2011GL050655
  • Drusch, M., Wood, E.F., and Gao, H., 2005. Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophysical Research Letters, 32 (15). doi:10.1029/2005gl023623
  • Du, E., Di Vittorio, A., and Collins, W.D., 2016. Evaluation of hydrologic components of community land model 4 and bias identification. International Journal of Applied Earth Observation and Geoinformation, 48, 5–16. doi:10.1016/j.jag.2015.03.013
  • Dumedah, G. and Coulibaly, P., 2013. Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data. Advances in Water Resources, 53, 231–241. doi:10.1016/j.advwatres.2012.07.012
  • Dumedah, G. and Walker, J.P., 2014. Intercomparison of the JULES and CABLE land surface models through assimilation of remotely sensed soil moisture in southeast Australia. Advances in Water Resources, 74, 231–244. doi:10.1016/j.advwatres.2014.09.011
  • Enenkel, M., et al., 2016. Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20 (10), 4191–4208. doi:10.5194/hess-20-4191-2016
  • Escorihuela, M.J., et al., 2010. Effective soil moisture sampling depth of L-band radiometry: a case study. Remote Sensing of Environment, 114 (5), 995–1001. doi:10.1016/j.rse.2009.12.011
  • Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research Atmospheres, 99 (C5), 10143–10162. doi:10.1029/94JC00572
  • Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53 (4), 343–367. doi:10.1007/s10236-003-0036-9
  • Fairbairn, D., et al., 2015. Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions. Hydrology and Earth System Sciences, 19 (12), 4811–4830. doi:10.5194/hess-19-4811-2015
  • Fang, X., Xu, Y., and Zhou, Z., 2011. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nuclear Engineering and Design, 241 (3), 897–902. doi:10.1016/j.nucengdes.2010.12.019
  • Ford, T., Harris, E., and Quiring, S., 2014. Estimating root zone soil moisture using near-surface observations from SMOS. Hydrology and Earth System Sciences, 18 (1), 139–154. doi:10.5194/hess-18-139-2014
  • Gao, H., et al., 2006. Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. Journal of Hydrometeorology, 7 (1), 23–38. doi:10.1175/jhm473.1
  • Gao, S., et al., 2014. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54–66. doi:10.1016/j.jag.2014.03.003
  • Gruber, A., Crow, W.T., and Dorigo, W.A., 2018. Assimilation of spatially sparse in situ soil moisture networks into a continuous model domain. Water Resources Research, 54, 1353–1367. doi:10.1002/2017WR021277
  • Gruhier, C., et al., 2010. Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site. Hydrology and Earth System Sciences, 14 (1), 141–156. doi:10.5194/hess-14-141-2010
  • Han, E., Merwade, V., and Heathman, G.C., 2012. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model. Journal of Hydrology, 416, 98–117. doi:10.1016/j.jhydrol.2011.11.039
  • Hansen, M.C., et al., 2000. Global land cover classification at 1km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21 (6–7), 1331–1364. doi:10.1080/014311600210209
  • Jia, Y., et al., 2001. Development of WEP model and its application to an urban watershed. Hydrological Processes, 15 (11), 2175–2194. doi:10.1002/hyp.275
  • Kolassa, J., Reichle, R.H., and Draper, C.S., 2017. Merging active and passive microwave observations in soil moisture data assimilation. Remote Sensing of Environment, 191, 117–130. doi:10.1016/j.rse.2017.01.015
  • Kumar, S.V., et al., 2012. A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resources Research, 48. doi:10.1029/2010wr010261
  • Laiolo, P., et al., 2016. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. International Journal of Applied Earth Observation and Geoinformation, 48, 131–145. doi:10.1016/j.jag.2015.06.002
  • Lakhankar, T., et al., 2010. Analysis of large scale spatial variability of soil moisture using a geostatistical method. Sensors, 10 (1), 913–932. doi:10.3390/s100100913
  • Liang, X., et al., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99 (D7), 14415–14428. doi:10.1029/94JD00483
  • Liang, X., Wood, E.F., and Lettenmaier, D.P., 1996. Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Global and Planetary Change, 13 (1–4), 195–206. doi:10.1016/0921-8181(95)00046-1
  • Lievens, H., et al., 2015. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sensing of Environment, 168, 146–162. doi:10.1016/j.rse.2015.06.025
  • Liu, Y., et al., 2012. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16 (10), 3863–3887. doi:10.5194/hess-16-3863-2012
  • Liu, Y.Y., et al., 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15 (2), 425–436. doi:10.5194/hess-15-425-2011
  • Mao, Y., et al., 2017. Spatio-temporal analysis of drought in a typical plain region based on the soil moisture anomaly percentage index. Science of the Total Environment, 576, 752–765. doi:10.1016/j.scitotenv.2016.10.116
  • Mao, Y.X., et al., 2019. A framework for diagnosing factors degrading the streamflow performance of a soil moisture data assimilation system. Journal of Hydrometeorology, 20 (1), 79–97. doi:10.1175/JHM-D-18-0115.1
  • Martens, B., et al., 2016. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. International Journal of Applied Earth Observation and Geoinformation, 48, 146–162. doi:10.1016/j.jag.2015.09.012
  • Massari, C., et al., 2015. Data assimilation of satellite soil moisture into rainfall-runoff modelling: a complex recipe? Remote Sensing, 7 (9), 11403–11433. doi:10.3390/rs70911403
  • Mo, K.C. and Lettenmaier, D.P., 2014. Objective drought classification using multiple land surface models. Journal of Hydrometeorology, 15 (3), 990–1010. doi:10.1175/jhm-d-13-071.1
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Penna, D., et al., 2009. Hillslope scale soil moisture variability in a steep alpine terrain. Journal of Hydrology, 364 (3–4), 311–327. doi:10.1016/j.jhydrol.2008.11.009
  • Penna, D., et al., 2013. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. Journal of Hydrology, 477, 55–71. doi:10.1016/j.jhydrol.2012.10.052
  • Peters-Lidard, C.D., et al., 2011. Estimating evapotranspiration with land data assimilation systems. Hydrological Processes, 25 (26), 3979–3992. doi:10.1002/hyp.8387
  • Reichle, R.H. and Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31 (19). doi:10.1029/2004gl020938
  • Reichle, R.H., Mclaughlin, D.B., and Entekhabi, D., 2002. Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review, 130 (1), 103–114. doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
  • Reynolds, C.A., Jackson, T.J., and Rawls, W.J., 2000. Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resources Research, 36 (12), 3653–3662. doi:10.1029/2000wr900130
  • Rosenbrock, H.H., 1960. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3 (3), 175–184. doi:10.1093/comjnl/3.3.175
  • Sahoo, A.K., et al., 2013. Assimilation and downscaling of satellite observed soil moisture over the little river experimental watershed in Georgia, USA. Advances in Water Resources, 52, 19–33. doi:10.1016/j.advwatres.2012.08.007
  • Seneviratne, S.I., et al., 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99 (3–4), 125–161. doi:10.1016/j.earscirev.2010.02.004
  • Shao, J., 1993. Linear model selection by cross-validation. Publications of the American Statistical Association, 88 (422), 486–494. doi:10.1080/01621459.1993.10476299
  • Shi, C., et al., 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Science China-Earth Sciences, 54 (9), 1430–1440. doi:10.1007/s11430-010-4160-3
  • Sun, Y., et al., 2017. Preliminary evaluation of the SMAP radiometer soil moisture product over china using in situ data. Remote Sensing, 9 (3). doi:10.3390/rs9030292
  • Tramblay, Y., et al., 2011. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation. Natural Hazards and Earth System Sciences, 11 (1), 157–170. doi:10.5194/nhess-11-157-2011
  • Walker, J.P., Willgoose, G.R., and Kalma, J.D., 2001. One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: a simplified soil moisture model and field application. Journal of Hydrometeorology, 2 (4), 356–373. doi:10.1175/1525-7541(2001)002<0356:odsmpr>2.0.co;2
  • Wu, Z., et al., 2007. Thirty-five year (1971–2005) simulation of daily soil moisture using the variable infiltration capacity model over China. Atmosphere-Ocean, 45 (1), 37–45. doi:10.3137/ao.v450103
  • Wu, Z.Y., et al., 2011. Reconstructing and analyzing China’s fifty-nine year (1951–2009) drought history using hydrological model simulation. Hydrology and Earth System Sciences, 15 (9), 2881–2894. doi:10.5194/hess-15-2881-2011
  • Wu, Z.Y., et al., 2018. An advanced error correction methodology for merging in-situ observed and model-based soil moisture. Journal of Hydrology, 566 (2018), 150–163. doi:10.1016/j.jhydrol.2018.09.018
  • Yamamoto, J.K., 2005. Correcting the smoothing effect of ordinary kriging estimates. Mathematical Geology, 37 (1), 69–94. doi:10.1007/s11004-005-8748-7
  • Yang, Y., Shang, S., and Chao, L.I., 2010. Correcting the smoothing effect of ordinary Kriging estimates in soil moisture interpolation. Advances in Water Science, 21 (2), 208–213. doi:10.14042/j.cnki.32.1309.2010.02.018
  • Yilmaz, M.T., et al., 2012. An objective methodology for merging satellite- and model-based soil moisture products. Water Resources Research, 48 (11). doi:10.1029/2011wr011682
  • Zhang, S., et al., 2016. Hydrological change driven by human activities and climate variation and its spatial variability in Huaihe Basin, China. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 61 (8), 1370–1382. doi:10.1080/02626667.2015.1035657
  • Zou, L., et al., 2017. Implementation of evapotranspiration data assimilation with catchment scale distributed hydrological model via an ensemble Kalman filter. Journal of Hydrology, 549, 685–702. doi:10.1016/j.jhydrol.2017.04.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.