3,184
Views
12
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis of nonparametric change-point detectors commonly used in hydrology

, , &
Pages 1690-1710 | Received 20 Sep 2018, Accepted 16 Jul 2019, Published online: 01 Oct 2019

References

  • Anderson, T.W., 1962. On the distribution of the two-sample Cramér-von Mises criterion. The Annals of Mathematical Statistics, 33 (3), 1148–1159. doi:10.1214/aoms/1177704477
  • Anderson, T.W. and Darling, D.A., 1954. A test of goodness of fit. Journal of the American Statistical Association, 49 (268), 765–769. doi:10.1080/01621459.1954.10501232
  • Antoch, J., Hušková, M., and Prášková, Z., 1997. Effect of dependence on statistics for determination of change. Journal of Statistical Planning and Inference, 60 (2), 291–310. doi:10.1016/S0378-3758(96)00138-3
  • Beaulieu, C., Chen, J., and Sarmiento, J.L., 2012. Change-point analysis as a tool to detect abrupt climate variations. Philosophical Transactions of the Royal Society A, 370 (1962), 1228–1249. doi:10.1098/rsta.2011.0383
  • Berkes, I., et al., 2006. On discriminating between long-range dependence and changes in mean. The Annals of Statistics, 34 (3), 1140–1165. doi:10.1214/009053606000000254
  • Bücher, A., et al., 2014. Detecting changes in cross-sectional dependence in multivariate time series. Journal of Multivariate Analysis, 132, 111–128. doi:10.1016/j.jmva.2014.07.012
  • Chernoff, H. and Zacks, S., 1964. Estimating the current mean of a normal distribution which is subjected to changes in time. The Annals of Mathematical Statistics, 35 (3), 999–1018. doi:10.1214/aoms/1177700517
  • Chiew, F. and McMahon, T., 1993. Detection of trend or change in annual flow of Australian rivers. International Journal of Climatology, 13 (6), 643–653. doi:10.1002/(ISSN)1097-0088
  • Cho, H. and Fryzlewicz, P., 2015. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. Journal of the Royal Statistical Society B, 77 (2), 475–507. doi:10.1111/rssb.12079
  • Dudding, B.P. and Jennett, W., 1942. Quality control charts: BS 600R. British Standards Institution.
  • Gao, P., et al., 2010. Trend and change-point analyses of streamflow and sediment discharge in the Yellow river during 1950–2005. Hydrological Sciences Journal, 55 (2), 275–285. doi:10.1080/02626660903546191
  • Gombay, E., 2008. Change detection in autoregressive time series. Journal of Multivariate Analysis, 99 (3), 451–464. doi:10.1016/j.jmva.2007.01.003
  • Gombay, E. and Horváth, L., 1999. Change-points and bootstrap. Environmetrics, 10 (6), 725–736. doi:10.1002/(ISSN)1099-095X
  • Gurevich, G. and Vexler, A., 2010. Retrospective change point detection: from parametric to distribution free policies. Communications in Statistics—Simulation and Computation, 39, 1–22. doi:10.1080/03610911003663881
  • Hajani, E., Rahman, A., and Ishak, E., 2017. Trends in extreme rainfall in the state of New South Wales, Australia. Hydrological Sciences Journal, 62 (13), 2160–2174. doi:10.1080/02626667.2017.1368520
  • Hawkins, D.M., 1987. Self-starting CUSUM charts for location and scale. Statistician, 1, 299–316. doi:10.2307/2348827
  • Holmes, M., Kojadinovic, I., and Quessy, J., 2013. Nonparametric tests for change-point detection à la Gomabay and Hováth. Journal of Multivariate Analysis, 115, 16–32. doi:10.1016/j.jmva.2012.10.004
  • Kander, Z. and Zacks, S., 1966. Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. The Annals of Mathematical Statistics, 1, 1196–1210. doi:10.1214/aoms/1177699265
  • Koutsoyiannis, D., 2004. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. Hydrological Sciences Journal, 49 (4), 591–610. doi:10.1623/hysj.49.4.591.54424
  • Kundzewicz, Z.W., 2011. Nonstationarity in water resources–central European perspective 1. JAWRA Journal of the American Water Resources Association, 47 (3), 550–562. doi:10.1111/j.1752-1688.2011.00549.x
  • Kundzewicz, Z.W. and Robson, A., 2000. Detecting trend and other changes in hydrological data. World climate data and monitoring programme, WCDMP 45, WMO/TD-No. 1013. Geneva, Switzerland: World Meteorological Organization.
  • Kundzewicz, Z.W. and Robson, A.J., 2004. Change detection in hydrological records—a review of the methodology/revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrological Sciences Journal, 49 (1), 7–19. doi:10.1623/hysj.49.1.7.53993
  • Lavielle, M. and Teyssiere, G., 2006. Detection of multiple change-points in multivariate time series. Lithuanian Mathematical Journal, 46 (3), 287–306. doi:10.1007/s10986-006-0028-9
  • Lebarbier, É., 2005. Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Processing, 85 (4), 717–736. doi:10.1016/j.sigpro.2004.11.012
  • Lund, R., et al., 2007. Changepoint detection in periodic and autocorrelated time series. Journal of Climate, 20 (20), 5178–5190. doi:10.1175/JCLI4291.1
  • Lund, R. and Reeves, J., 2002. Detection of undocumented changepoints: a revision of the two-phase regression model. Journal of Climate, 15 (17), 2547–2554. doi:10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2
  • Mallakpour, I.V. and Villarini, G., 2016. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal, 61 (2), 245–254. doi:10.1080/02626667.2015.1008482
  • Matteson, D.S. and James, N.A., 2014. A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109 (505), 334–345. doi:10.1080/01621459.2013.849605
  • McGilchrist, C. and Woodyer, K., 1975. Note on a distribution-free CUSUM technique. Technometrics, 17 (3), 321–325. doi:10.1080/00401706.1975.10489335
  • McMillan, H., et al., 2016. Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 61 (7), 1174–1191.
  • Menne, M.J. and Williams, C.N., Jr, 2005. Detection of undocumented changepoints using multiple test statistics and composite reference series. Journal of Climate, 18 (20), 4271–4286. doi:10.1175/JCLI3524.1
  • Ministry of Water Resources of the People’s Republic of China, 1919-2014. The People’s Republic of China hydrological yearbook middle main stream of changjiang hydrological data. Beijing: China Water Power Press.
  • Ministry of Water Resources of the People’s Republic of China, 1950-2014. The People’s Republic of China hydrological yearbook upper main stream of changjiang hydrological data. Beijing: China Water Power Press.
  • Montanari, A., et al., 2013. “Panta Rhei—everything flows”: change in hydrology and society—the IAHS scientific decade 2013–2022. Hydrological Sciences Journal, 58 (6), 1256–1275. doi:10.1080/02626667.2013.809088
  • Page, P.E., 1954. Continuous inspection schemes. Biometrika, 41 (1/2), 100–115. doi:10.1093/biomet/41.1-2.100
  • Pettitt, A.N., 1979. A non-parametric approach to the change point problem. Applied Statistics, 28 (2), 126–135. doi:10.2307/2346729
  • Rahman, A.A., Yahaya, S.S.S., and Atta, A.M.A., 2018. The effect of median based estimators on CUSUM chart. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10 (1–10), 49–52.
  • Ray, B.K. and Tsay, R.S., 2002. Bayesian methods for change-point detection long-range dependent processes. Journal of Time Series Analysis, 23 (6), 687–705. doi:10.1111/1467-9892.00286
  • Reeves, J., et al., 2007. A review and comparison of change point detection techniques for climate data. Journal of Applied Meteorology and Climatology, 46, 900–915. doi:10.1175/JAM2493.1
  • Reich, N.G., et al., 2012. Empirical power and sample size calculations for cluster-randomized and cluster-randomized crossover studies. PLoS One, 7, e35564. doi:10.1371/journal.pone.0035564
  • Sa’adi, Z., et al., 2017. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test. Meteorology and Atmospheric Physics, 131 (3), 1–15.
  • Shao, X., 2015. Self-normalization for time series: a review of recent developments. Journal of the American Statistical Association, 110 (512), 1797–1817. doi:10.1080/01621459.2015.1050493
  • Shao, X. and Zhang, X., 2010. Testing for change points in time series. Journal of the American Statistical Association, 105 (491), 1228–1240. doi:10.1198/jasa.2010.tm10103
  • Talwar, P. and Gentle, J., 1981. Detecting a scale shift in a random sequence at an unknown time point. Applied Statistics, 30, 301–304. doi:10.2307/2346356
  • Thirel, G., et al., 2015. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 60 (7–8), 1184–1199. doi:10.1080/02626667.2014.967248
  • van Nooijen, R.R.P. and Kolechkina, A.G., 2012. Estimates of extremes in the best of all possible worlds. 3rd STAHY international workshop on statistical methods for hydrology and water resources management, October 2012. Tunis, Tunisia: Unpublished.
  • Wang, X.L., 2003. Comments on “detection of undocumented changepoints: a revision of the two-phase regression model”. Journal of Climate, 16 (20), 3383–3385. doi:10.1175/1520-0442(2003)016<3383:CODOUC>2.0.CO;2
  • Wang, X.L., 2008. Penalized maximal F test for detecting undocumented mean shift without trend change. Journal of Atmospheric and Oceanic Technology, 25 (3), 368–384. doi:10.1175/2007JTECHA982.1
  • Wang, Y., et al., 2013. Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008. Science China Earth Sciences, 56 (8), 1398–1412. doi:10.1007/s11430-012-4505-1
  • Xie, H., Li, D., and Xiong, L., 2014. Exploring the ability of the Pettitt method for detecting change point by Monte Carlo simulation. Stochastic and Environmental Research and Risk Assessment, 28 (7), 1643–1655. doi:10.1007/s00477-013-0814-y
  • Xie, Y., Huang, J., and Willett, R., 2012. Change-point detection for high-dimensional time series with missing data. IEEE Journal of Selected Topics in Signal Processing, 7 (1), 12–27. doi:10.1109/JSTSP.2012.2234082
  • Xiong, L., et al., 2015. A framework of change-point detection for multivariate hydrological series. Water Resources Research, 51 (10), 8198–8217. doi:10.1002/2015WR017677
  • Xiong, L. and Guo, S., 2004. Trend test and change-point detection for the annual discharge series of the Yangtze river at the Yichang hydrological station. Hydrological Sciences Journal, 49 (1), 99–112. doi:10.1623/hysj.49.1.99.53998
  • Yang, S.L., et al., 2003. Delta response to decline in sediment supply from the Yangtze river: evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 57 (4), 689–699. doi:10.1016/S0272-7714(02)00409-2
  • Zhang, Q., et al., 2006. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze river basin, China. Journal of Hydrology, 324 (1), 255–265. doi:10.1016/j.jhydrol.2005.09.023
  • Zhang, Q., et al., 2012. The influence of dam and lakes on the Yangtze river streamflow: long‐range correlation and complexity analyses. Hydrological Processes, 26 (3), 436–444. doi:10.1002/hyp.8148
  • Zhang, T. and Lavitas, L., 2018. Unsupervised self-normalized change-point testing for time series. Journal of the American Statistical Association, 1–12. doi:10.1080/01621459.2018.1527227