713
Views
7
CrossRef citations to date
0
Altmetric
Articles

How persistent are hysteresis patterns between suspended sediment concentration and discharge at different timescales?

ORCID Icon, , &
Pages 1909-1917 | Received 29 Mar 2019, Accepted 08 Aug 2019, Published online: 23 Oct 2019

References

  • Achite, M. and Ouillon, S., 2007. Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973–1995). Journal of Hydrology, 343, 187–202. doi:10.1016/j.jhydrol.2007.06.026
  • Aich, V., Zimmermann, A., and Elsenbeer, H., 2014. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: how much data do we need? Catena, 122, 120–129. doi:10.1016/j.catena.2014.06.020
  • Alatorre, L.C., Beguería, S., and García-Ruiz, J.M., 2010. Regional scale modeling of hillslope sediment delivery: a case study in the Barasona reservoir watershed (Spain) using WATEM/SEDEM. Journal of Hydrology, 391 (1–2), 109–123. doi:10.1016/j.jhydrol.2010.07.010
  • Alatorre, L.C., et al., 2012. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrology and Earth System Sciences, 16 (5), 1321–1334. doi:10.5194/hess-16-1321-2012
  • Amos, K.J., et al., 2004. Supply limited sediment transport in a high‐discharge event of the tropical Burdekin River, North Queensland, Australia. Sedimentology, 51 (1), 145–162. doi:10.1111/sed.2004.51.issue-1
  • Bull, L.J., et al., 1995. Downstream changes in suspended sediment fluxes in the River Severn, UK. In: W.R. Osterkamp, ed. Effects of scale on interpretation and management of sediment and water quality: proceedings of the Boulder Symposium, July 1995, Institute of Hydrology, Staylittle, Llanbynmair, Powys, Wales, UK. International Association of Hydrological Sciences Publication no. 226, 27–37.
  • Butturini, A., et al., 2008. Diversity and temporal sequences of forms of DOC and NO3-discharge responses in an intermittent stream: predictable or random succession? Journal of Geophysics Researches, 113, G03016.
  • Butturini, A., et al., 2006. Cross-site comparison of variability of DOC and nitrate C–Q hysteresis during the autumn–winter period in three Mediterranean headwater streams: a synthetic approach. Biogeochemistry, 77, 327–349. doi:10.1007/s10533-005-0711-7
  • Cantero‐Chinchilla, F.N., Castro‐Orgaz, O., and Dey, S., 2016. Distribution of suspended sediment concentration in wide sediment‐laden streams: a novel power‐law theory. Sedimentology, 63 (6), 1620–1633. doi:10.1111/sed.12276
  • De Girolamo, A.M., Pappagallo, G., and Lo Porto, A., 2015. Temporal variability of suspended sediment transport and rating curves in a mediterranean river basin: the Celone (SE Italy). Catena, 128, 135–143. doi:10.1016/j.catena.2014.09.020
  • Desmond, L.W.A., 2009. Sediment response to tropical storms in Singapore residential catchments. Ph.D. Dissertation, National University of Singapore. p. 430.
  • Eder, A., et al., 2010. Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria). Journal of Hydrology, 389, 168–176. doi:10.1016/j.jhydrol.2010.05.043
  • Esteves, M., et al., 2019. Medium term high frequency observation of discharges and suspended sediment in a mediterranean mountainous catchment. Journal of Hydrology, 568, 562–574. doi:10.1016/j.jhydrol.2018.10.066
  • Fan, X.L., et al., 2012. Sediment rating curves in the Ningxia–inner Mongolia reaches of the upper Yellow River and their implications. Quaternary International, 282, 152–162. doi:10.1016/j.quaint.2012.04.044
  • Gao, P. and Josefson, M., 2012. Temporal variations of suspended sediment transport in Oneida Creek watershed, central New York. Journal of Hydrology, 426–427, 17–27. doi:10.1016/j.jhydrol.2012.01.012
  • Gao, P. and Pasternack, G., 2007. Dynamics of suspended sediment transport at field-scale drain channels of irrigation-dominated watersheds in the Sonoran Desert, southeastern California. Hydrological Processes, 21, 2081–2092. doi:10.1002/(ISSN)1099-1085
  • Gellis, A.C., 2013. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid tropical Puerto Rico. Catena, 104, 39–57. doi:10.1016/j.catena.2012.10.018
  • Gomi, T., Dan Moore, R., and Hassan, M.A., 2005. Suspended sediment dynamics in small forest streams of the Pacific Northwest. Journal of American Water Resources Associations, 877–898. doi:10.1111/j.1752-1688.2005.tb03775.x
  • Gonzales-Inca, C., et al., 2018. Spatial modeling of sediment transfer and identification of sediment sources during snowmelt in an agricultural watershed in boreal climate. Science of the Total Environment, 612, 303–312. doi:10.1016/j.scitotenv.2017.08.142
  • Hasberg, A.K.M., et al., 2018. Modern sedimentation processes in Lake Towuti, Indonesia, revealed by the composition of surface sediments. Sedimentology. doi:10.1111/sed.12503
  • Hazbavi, Z., et al., 2018. Health comparative comprehensive assessment of watersheds with different climates. Ecological Indicators, 93, 781–790. doi:10.1016/j.ecolind.2018.05.078
  • Heathwaite, A.L., et al., 2005. A tiered risk-based approach for predicting diffuse and point source phosphorus losses in agricultural areas. Science of the Total Environment, 344 (1–3), 225–239. doi:10.1016/j.scitotenv.2005.02.034
  • Hu, J., et al., 2019. Runoff-sediment dynamics under different flood patterns in a Loess Plateau catchment, China. Catena, 173, 234–245. doi:10.1016/j.catena.2018.10.023
  • Keesstra, S.D., et al., 2019. Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. Journal of Soils and Sediments, 19 (3), 1598–1612. doi:10.1007/s11368-018-02223-0
  • Keesstra, S.D., et al., 2018. The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 1557–1572. doi:10.1016/j.scitotenv.2018.06.342
  • Kumar, A., Sharma, A.K., and Rani, A., 2015. Transport of solutes under transient flow conditions – A case study – Yamuna river sub basin (Kosi Kalan to Agra). International Soil and Water Conservation Research, 3 (3), 209–223. doi:10.1016/j.iswcr.2015.06.004
  • Lana-Renault, N., et al., 2007. Temporal variability in the relationships between precipitation, discharge and suspended sediment concentration in a small Mediterranean mountain catchment. Nordic Hydrology, 38 (2), 139–150. doi:10.2166/nh.2007.003
  • Lawler, D.M., et al., 2006. Turbidity dynamics during spring storm events in an urban headwater river system: the upper Tame, West Midlands, UK. Science of the Total Environment, 360 (1–3), 109–126. doi:10.1016/j.scitotenv.2005.08.032
  • Lee, K.T. and Yang, C., 2010. Estimation of sediment yield during storms based on soil and watershed geomorphology characteristics. Journal of Hydrology, 382, 145–153. doi:10.1016/j.jhydrol.2009.12.025
  • Lloyd, C.E.M., et al., 2016. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Science of the Total Environment, 543, 388–404. doi:10.1016/j.scitotenv.2015.11.028
  • Mallya, G., Hantush, M., and Govindaraju, R.S., 2018. Composite measures of watershed health from a water quality perspective. Journal of Environmental Management, 214, 104–124. doi:10.1016/j.jenvman.2018.02.049
  • Mao, L. and Carrillo, R., 2017. Temporal dynamics of suspended sediment transport in a glacierized Andean basin. Geomorphology, 287, 116–125. doi:10.1016/j.geomorph.2016.02.003
  • Masselink, R.J., et al., 2017. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes, 31 (1), 207–220. doi:10.1002/hyp.10993
  • Megnounif, A., Terfous, A., and Ouillon, S., 2013. A graphical method to study suspended sediment dynamics during flood events in the Wadi Sebdou, NW Algeria (1973–2004). Journal of Hydrology, 497, 24–36. doi:10.1016/j.jhydrol.2013.05.029
  • Misset, C., et al., 2019. An attempt to link suspended load hysteresis patterns and sediment sources configuration in Alpine catchments. Journal of Hydrology, 576, 72–84. doi:10.1016/j.jhydrol.2019.06.039
  • Nistor, C.J. and Church, M., 2005. Suspended sediment transport regime in a debris-flow gully on Vancouver Island, British Columbia. Hydrological Processes, 19, 861–885. doi:10.1002/(ISSN)1099-1085
  • Nu-Fang, F., et al., 2011. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the three Gorges area. China. Geomorphology, 135, 158–166. doi:10.1016/j.geomorph.2011.08.013
  • Perks, M.T., et al., 2015. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Science of the Total Environment, 523, 178–190. doi:10.1016/j.scitotenv.2015.03.008
  • Perks, M.T., et al., 2017. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management. Journal of Environmental Management, 2 (2), 469–478. doi:10.1016/j.jenvman.2017.01.045
  • Ramos, T.B., et al., 2015. Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena, 127, 177–190. doi:10.1016/j.catena.2015.01.001
  • Sadeghi, S.H.R., et al., 2017. Non-point source contribution and dynamics of soluble and particulate phosphorus from main tributaries of the Zarivar Lake Watershed, Iran. Environmental Monitoring and Assessment, 189, 238:1–13. doi:10.1007/s10661-017-5937-z
  • Sadeghi, S.H.R., et al., 2008. Determinant factors of sediment graphs and rating loops in a reforested watershed. Journal of Hydrology, 356, 271–282. doi:10.1016/j.jhydrol.2008.04.005
  • Sadeghi, S.H.R. and Saeidi, P., 2010. Reliability of sediment rating curves for a deciduous forest watershed in Iran. Hydrological Science Journal, 55 (5), 821–831. doi:10.1080/02626667.2010.489797
  • Sadeghi, S.H.R., Saeidi, P., and Kiani Harchegani, M., 2012. Monthly variations of sediment graph in educational and research forest watershed of Tarbiat Modares University in Iran. In: Proceedings of International Conference on Sediment Transport Modeling in Hydrological Watersheds and Rivers, 14–16 November 2012. Istanbul, Turkey, 347–352.
  • Sadeghi, S.H.R. and Singh, V.P., 2017. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source. Journal of Hydrology, 554, 100–110. doi:10.1016/j.jhydrol.2017.09.006
  • Sadeghi, S.H.R., et al., 2018. Analysis of sediment rating loops and particle size distributions to characterize sediment source at mid-sized plot scale. Catena, 167, 221–227. doi:10.1016/j.catena.2018.05.002
  • Seeger, M., et al., 2004. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology, 288, 299–311. doi:10.1016/j.jhydrol.2003.10.012
  • Simon, A., et al., 2000. Bank and near-bank processes in an incised channel. Geomorphology, 35, 193–217. doi:10.1016/S0169-555X(00)00036-2
  • Sun, L., et al., 2015. Suspended sediment dynamics at different time scales in the Loushui river, south-central China. Catena, 136, 152–161. doi:10.1016/j.catena.2015.02.014
  • Vercruysse, K., Grabowski, R.C., and Rickson, R.J., 2017. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sciences Review, 166, 38–52. doi:10.1016/j.earscirev.2016.12.016
  • Walling, D.E., et al., 2001. Integrated assessment of catchment suspended sediment budgets: a Zambian example. Land Degradation and Development, 12, 387–415. doi:10.1002/ldr.461
  • Welde, K., 2016. Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. International Soil and Water Conservation Research, 4 (1), 30–38. doi:10.1016/j.iswcr.2016.02.006
  • Welde, K. and Gebremariam, B., 2017. Effect of land use land cover dynamics on hydrological response of watershed: case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5 (1), 1–16. doi:10.1016/j.iswcr.2017.03.002
  • Williams, G.P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology, 111, 89–106. doi:10.1016/0022-1694(89)90254-0
  • Wood, P.A., 1977. Controls of variation in suspended sediment concentration in the river Rother, West Sussex, England. Sedimentology, 24, 437–445. doi:10.1111/sed.1977.24.issue-3
  • Yang, C. and Lee, K.T., 2018. Analysis of flow-sediment rating curve hysteresis based on flow and sediment travel time estimations. International Journal of Sediment Research, 33 (2), 171–182. doi:10.1016/j.ijsrc.2017.10.003
  • Zheng, M., et al., 2013. The spatio-temporal invariability of sediment concentration and the flow–sediment relationship for hilly areas of the Chinese Loess Plateau. Catena, 109, 164–176. doi:10.1016/j.catena.2013.03.017
  • Zuecco, G., et al., 2016. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes, 30 (9), 1449–1466. doi:10.1002/hyp.10681

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.