3,428
Views
28
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework

, ORCID Icon & ORCID Icon
Pages 1458-1473 | Received 18 Sep 2019, Accepted 27 Feb 2020, Published online: 07 May 2020

References

  • Abebe, Y.A., et al., 2018. A coupled flood-agent-institution modelling (CLAIM) framework for urban flood risk management. Environmental Modelling and Software, 1 (10), 109317.
  • Abebe, Y.A., et al., 2019. Flood risk management in Sint Maarten – a coupled agent-based and flood modelling method. Journal of Environmental Management, 248, 109317. doi:10.1016/j.jenvman.2019.109317
  • Aerts, J.C.J.H., et al., 2018. Integrating human behavior dynamics into flood disaster risk assessment. Nature Climate Change, 8 (2), 193–199. doi:10.1038/s41558-018-0085-1
  • An, L., 2012. Modelling human decisions in coupled human and natural systems: review of agent-based models. Ecological Modelling, 229 (3), 25–36. doi:10.1016/j.ecolmodel.2011.07.010
  • Anastasio, T.J., et al., 2012. Individual and collective memory consolidation – analogous processes on different levels. Camebridge, MA: MIT Press.
  • Baan, P.J.A. and Klijn, F., 2004. Flood risk perception and implications for flood risk management in the Netherlands. International Journal of River Basin Management, 2, 113–122. doi:10.1080/15715124.2004.9635226
  • Barendrecht, M.H., et al., 2019. The value of empirical data for estimating the parameters of a socio-hydrological flood risk model. Water Resources Research, 55, 1312–1336. doi:10.1029/2018WR024128.
  • Bar-Yam, Y., 1997. Dynamics of complex systems. Reading(Massachusetts): Addison-Wesley.
  • Bates, P., et al., 2013. Lisflood-FP. User manual. School of Geographical Sciences, University of Bristol. Bristol, UK.
  • Begg, C., et al., 2017. Interactions between citizen responsibilization, flood experience and household resilience: insights from the 2013 flood in Germany. International Journal of Water Resources Development, 33 (4), 591–608. doi:10.1080/07900627.2016.1200961
  • Brody, S.D., Kang, J.E., and Bernhardt, S., 2009. Identifying factors influencing flood mitigation at the local level in Texas and Florida: the role of organizational capacity. Natural Hazards, 52 (2), 167–184. doi:10.1007/s11069-009-9364-5
  • Bubeck, P., et al., 2013. Detailed insights into the influence of flood-coping appraisals on mitigation behavior. Global Environmental Change, 23, 1327–1338. doi:10.1016/j.gloenvcha.2013.05.009
  • Bubeck, P., Botzen, W.J.W., and Aerts, J.C.J.H., 2012. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis, 32 (3), 1481–1495. doi:10.1111/j.1539-6924.2011.01783.x
  • Chu, H.J., Yoon, K.S., and Lee, J.K., 2009. Estimation of inflow to inundation area due to levee breach. In: Advances in Water Resources and Hydraulic Engineering. Berlin: Springer, 1022–1025.
  • Ciullo, A., et al., 2017. Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrological Sciences Journal, 62 (1), 880–891. doi:10.1080/02626667.2016.1273527
  • Collenteur, R.A., et al., 2015. The failed-levee effect: do societies learn from flood disasters? Natural Hazards, 76 (1 3), 373–388. doi:10.1007/s11069-014-1496-6
  • CRED and UNISDR (Centre for Research on the Epidemiology of Disasters and UN Office for Disaster Risk Reduction), 2015. The human cost of weather-related disasters 1995–2015. Available from: https://www.unisdr.org/2015/docs/climatechange/COP21_WeatherDisastersReport_2015_FINAL.pdf [Accessed 30 March 2020].
  • Crooks, A., Heppenstall, A., and Malleson, N., 2018. Agent-based modelling. In: Bo Huang, ed. Comprehensive geographic information systems. s.l.: Elsevier, 218–243.
  • Di Baldassarre, G., et al., 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17 (8), 3295–3303. doi:10.5194/hess-17-3295-2013
  • Di Baldassarre, G., et al., 2015. Debates-Perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resources Research, 51 (6), 4770–4781. doi:10.1002/2014WR016416
  • Di Baldassarre, G., Brath, A., and Castellarin, A., 2009. Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy. Hydrological Sciences Journal, 54 (12), 1007–1017. doi:10.1623/hysj.54.6.1007
  • Dottori, F., et al., 2016. Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 94, 87–102. doi:10.1016/j.advwatres.2016.05.002
  • Dow, K. and Cutter, S.L., 1998. Crying wolf: repeat responses to hurricane evacuation orders. Coastal Management, 26 (1), 237–252. doi:10.1080/08920759809362356
  • Dubbelboer, J., et al., 2017. An agent-based model of flood risk and insurance. Journal of Artificial Societies and Social Simulation, 20(1), 6. doi:10.18564/jasss.3135.
  • EC (European Commission), 2007. The EU Floods Directive. Directive 2007/60/EC of the European Parliament and of the Council on the assessment and management of flood risk. https://ec.europa.eu/environment/water/flood_risk/ [Accessed 20 April 2020].
  • Egli, T., 2002. Non structural flood plain management. 2nd ed. Koblenz, Germany: International Commission for the Protection of the Rhine.
  • Ferdous, M.R., et al., 2019a. The levee effect along the Jamuna River in Bangladesh. Water International, 44 (5), 496–519. doi:10.1080/02508060.2019.1619048
  • Ferdous, M.R., et al., 2019b. The costs of living with floods in the Jamuna Floodplain in Bangladesh. Water, 11, 1238. doi:10.3390/w11061238
  • Filatova, T., 2015. Empirical agent-based land market: integrating adaptive economic behavior in urban land-use models. Computers, Environment and Urban Systems, 54 (11), 397–413. doi:10.1016/j.compenvurbsys.2014.06.007
  • Gergel, S.E., Dixon, M.D., and Turner, M.G., 2002. Consequences of human-altered floods: levees, floods, and floodplain forests along the Wisconsin River. Ecological Applications, 12 (6), 1755–1770. doi:10.1890/1051-0761(2002)012[1755:COHAFL]2.0.CO;2
  • Grimm, V., et al., 2006. A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198 (9), 115–126. doi:10.1016/j.ecolmodel.2006.04.023
  • Grimm, V., et al., 2010. The ODD protocol: A review and first update. Ecological Modelling, 221 (11), 2760–2768. doi:10.1016/j.ecolmodel.2010.08.019
  • Grothmann, T. and Reusswig, F., 2006. People at risk of flooding: why some residents take precautionary action while others do not. Natural Hazards, 38, 101–120. doi:10.1007/s11069-005-8604-6
  • Haer, T., et al., 2017. Integrating household risk mitigation behavior in flood risk analysis: an agent-based model approach. Risk Analysis, 37 (11), 1977–1992. doi:10.1111/risa.12740
  • Haer, T., et al., 2019. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 60, 102009.
  • Haer, T., Botzen, W.J.W., and Aerts, J.C.J.H., 2016. The effectiveness of flood risk communication strategies and the influence of social networks: insights from an agent-based model. Environmental Science and Policy, 60 (6), 44–52. doi:10.1016/j.envsci.2016.03.006
  • Horritt, M.S. and Bates, P.D., 2001a. Predicting floodplain inundation: raster‐based modelling versus the finite‐element approach. Hydrological Processes, 15, 825–842. doi:10.1002/hyp.188
  • Horritt, M.S. and Bates, P.D., 2001b. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology, 253, 239–249. doi:10.1016/S0022-1694(01)00490-5
  • Hui, R., Lund, J.R., and Madani, K., 2016. Game theory and risk‐based leveed river system planning with noncooperation. Water Resources Research, 52, 119–134. doi:10.1002/2015WR017707
  • Huizinga, J., Moel, H., and Szewczyk, W., 2017. Global flood depth-damage functions: methodology and the database with guidelines. JRC technical reports. Publications Office of the European Union. doi:10.2760/16510
  • Husby, T., et al., 2014. Do floods have permanent effects? evidence from the Netherlands. Journal of Regional Science, 54 (3), 355-377. doi:10.1111/jors.12112
  • IPCC (Intergovernmental Panel on Climate Change), 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge, UK, and New York, NY, USA: Cambridge University Press.
  • Jenkins, K., et al., 2017. Assessing surface water flood risk and management strategies under future climate change: insights from an agent-based model. Science of the Total Environment, 595, 159–168. doi:10.1016/j.scitotenv.2017.03.242
  • Kreibich, H., et al., 2009. Is flow velocity a significant parameter in flood damage modelling? Natural Hazards and Earth System Science, 9, 1679–1692. doi:10.5194/nhess-9-1679-2009
  • Kreibich, H., Christenberger, S., and Schwarze, R., 2011. Economic motivation of households to undertake private precautionary measures against floods. Natural Hazards and Earth System Sciences, 309–321.
  • Kron, W., 2005. Flood risk = hazard • values • vulnerability. Water International, 30, 58–68. doi:10.1080/02508060508691837
  • Kunreuther, H., Sanderson, W., and Vetschera, R., 1985. A behavioral model of the adoption of protective activities. Journal of Economic Behavior and Organization, 6, 1–15. doi:10.1016/0167-2681(85)90022-8
  • Maione., U., Mignosa, P., and Tomirotti, M., 2003. Regional estimation of synthetic design hydrographs. International Journal of River Basin Management, 1 (2), 151–163. doi:10.1080/15715124.2003.9635202
  • Mazzoleni, M., et al., 2014. flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. Journal of Hydrologic Engineering, 19, 717–731. doi:10.1061/(ASCE)HE.1943-5584.0000840
  • Mazzoleni, M., et al., 2015. Innovative probabilistic methodology for evaluating the reliability of discrete levee reaches owing to piping. Journal of Hydrologic Engineering, 20 (5), 04014067. doi:10.1061/(ASCE)HE.1943-5584.0001055
  • Merz, B., et al., 2010. Review article ‘Assessment of economic flood damage’. Natural Hazards and Earth System Science, 10 (8), 1697–1724. doi:10.5194/nhess-10-1697-2010
  • Molinari, D., et al., 2016. Implementing the European ’Floods directive’: the case of the Po River Basin. Water Resources Management, 30 (5), 1739–1756. doi:10.1007/s11269-016-1248-3
  • Muis, S., et al., 2015. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Science of the Total Environment, 538, 445–457. doi:10.1016/j.scitotenv.2015.08.068
  • North, M.J., et al., 2007. A declarative model assembly infrastructure for veri cation and validation. In: Takahashi S., Sallach D., Rouchier J. eds. Advancing Social Simulation: The First World Congress. Tokyo: Springer Japan.
  • Pappenberger, F., et al., 2012. Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrology and Earth System Sciences, 16 (11), 4143–4156. doi:10.5194/hess-16-4143-2012
  • Pinter, N., et al., 2016. Modelling residual flood risk behind levees, Upper Mississippi River, USA. Environmental Science and Policy, 58 (4), 131–140. doi:10.1016/j.envsci.2016.01.003
  • Rogers, R.W., 1975. A protection motivation theory of fear appeals and attitude change. The Journal of Psychology, 91 (9), 93–114. doi:10.1080/00223980.1975.9915803
  • Rogers, R.W., 1983. Cognitive and physiological processes in fear appeals and attitude change: A revised theory of protection motivation. London: The Guilford Press.
  • Sampson, C.C., et al., 2015. A high-resolution global flood hazard model. Water Resources Research, 51 (9), 7358–7381. doi:10.1002/2015WR016954
  • Schanze, J., Zeman, E., and Marsalek, J., 2007. Flood risk management: hazards, vulnerability and mitigation measures. Dordrecht: Springer.
  • Scolobig, A., Marchi, B., and Borga, M., 2012. The missing link between flood risk awareness and preparedness: findings from case studies in an Alpine Region. Natural Hazards, 63, 499–520. doi:10.1007/s11069-012-0161-1
  • Siegrist, M., 2013. The necessity for longitudinal studies in risk perception research. Risk Analysis, 33, 50–51. doi:10.1111/j.1539-6924.2012.01941.x
  • Sivapalan, M., Savenije, H.H.G., and Blöschl, G., 2012. Socio-hydrology: A new science of people and water. Hydrological Processes, 26 (1), 1270–1276. doi:10.1002/hyp.8426
  • Sobiech, C., 2012. Research design. In: Agent-based simulation of vulnerability dynamics. s.l. Berlin, Heidelberg: Springer, 9–29.
  • Thieken, A.H., et al., 2007. Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrological Sciences Journal, 52, 1016–1037. doi:10.1623/hysj.52.5.1016
  • Thieken, A.H., et al., 2016. Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 21 (2). doi:10.5751/ES-08547-210251
  • Tonn, G.L. and Guikema, S.D., 2017. An agent-based model of evolving community flood risk. Risk Analysis, 38 (11), 1258–1278. doi:10.1111/risa.12939
  • UNDRR (United Nations Office for Disaster Risk Reduction), 2015. Sendai framework for disaster risk reduction 2015–2030. Available from: https://www.undrr.org/implementing-sendai-framework/what-sf [Accessed 30 March 2020].
  • Wainwright, J. and Mulligan, M., 2013. Environmental modelling –finding simplicity in complexity. 2nd ed. New York: John Wiley and Sons.
  • White, G.F., 1945. Human adjustments to floods. Chicago: The University of Chicago. Department of Geography Research, Paper no. 29.
  • Wolff, T.F., 1997. Geotechnical reliability of levees. Davis, CA: US Army Corps of Engineers Hydrologic Engineering Center.