1,867
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions

&
Pages 1667-1684 | Received 28 Jun 2018, Accepted 29 Feb 2020, Published online: 28 May 2020

References

  • Abushandi, E.H. and Merkel, B.J., 2013. Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water Resource Management, 27 (7), 2391–2409. doi:10.1007/s11269-013-0293-4
  • Ahmadi, M., et al., 2019. Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall–runoff simulation (case study: Kan watershed, Iran). Physics and Chemistry of the Earth. doi:10.1016/j.pce.2019.05.002
  • Ahooghalandari, M., Khiadani, M., and Kothapalli, G., 2015. Assessment of artificial neural networks and IHACRES models for simulating streamflow in Marillana catchment in the Pilbara, Western Australia. Australian Journal of Water Resources, 19 (2), 116–126. doi:10.1080/13241583.2015.1116183
  • Ajami, H., et al., 2017. On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective. Hydrology and Earth System Sciences, 21 (1), 281–294. doi:10.5194/hess-21-281-2017
  • Al-Qurashi, A., et al., 2008. Application of the Kineros2 rainfall–runoff model to an arid catchment in Oman. Journal of Hydrology, 355, 91–105. doi:10.1016/j.jhydrol.2008.03.022
  • Ao, T., et al., 2006. Relating BTOPMC model parameters to physical features of MOPEX basins. Journal of Hydrology, 320 (1–2), 84–102. doi:10.1016/j.jhydrol.2005.07.006
  • Arnold, J.G. and Allen, P.M., 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology, 176 (1–4), 57–77. doi:10.1016/0022-1694(95)02782-3
  • Benke, K.K., Lowell, K.E., and Hamilton, A.J., 2008. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Mathematical and Computer Modelling, 47, 1134–1149. doi:10.1016/j.mcm.2007.05.017
  • Beven, K., 1990. Changing ideas in hydrology — the case of physically based models — comment. Journal of Hydrology, 120 (1–4), 405–407. doi:10.1016/0022-1694(90)90161-P
  • Beven, K., 2007. Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. Hydrological and Earth System Sciences, 11 (1), 460–467. doi:10.5194/hess-11-460-2007
  • Beven, K., 2012. Rainfall–runoff Modelling. The Primer. 2nd ed. Chichester, UK: John Wiley & Sons. doi:10.1002/9781119951001
  • Beven, K., 2013. So how much of your error is epistemic? Lessons from Japan and Italy. Hydrological Processes, 27 (11), 1677–1680. doi:10.1002/hyp.9648
  • Blöschl, G., et al., 2019. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64, 1141–1158. doi:10.1080/02626667.2019.1620507
  • Bonell, M., 1993. Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology, 150 (2–4), 215–275. doi:10.1016/0022-1694(93)90112-M
  • Boughton, W., 2005. Catchment water balance modelling in Australia 1960-2004. Agricultural Water Management, 71 (2), 91–116. doi:10.1016/j.agwat.2004.10.012
  • Brassel, K.E. and Reif, D., 1979. A procedure to generate Thiessen polygons. Geographical Analysis, 11 (3), 289–303. doi:10.1111/j.1538-4632.1979.tb00695.x
  • Buakhao, W. and Kangrang, A., 2016. DEM resolution impact on the estimation of the physical characteristics of watersheds by using SWAT. Advances in Civil Engineering, 2016, 1–9. doi:10.1155/2016/8180158
  • Chiew, F.H.S., 2006. Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal, 51 (4), 613–625. doi:10.1623/hysj.51.4.613
  • Chiew, F.H.S., et al., 2014. Observed hydrologic non-stationarity in far south-eastern Australia: implications for modelling and prediction. Stochastic Environmental Research and Risk Assessment, 28 (1), 3–15. doi:10.1007/s00477-013-0755-5
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48 (5), W05552. doi:10.1029/2011WR011721
  • Croke, B.F.W. and Jakeman, A.J., 2004. A catchment moisture deficit module for the IHACRES rainfall–runoff model. Environmental Modelling & Software, 19 (1), 1–5. doi:10.1016/j.envsoft.2003.09.001
  • Croke, B.F.W., Merritt, W.S., and Jakeman, A.J., 2004. A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments. Journal of Hydrology, 291 (1–2), 115–131. doi:10.1016/j.jhydrol.2003.12.012
  • Deb, P., et al., 2018b. Variability of soil physicochemical properties at different agroecological zones oh Himalayan region: Sikkim, India. Environment, Development and Sustainability. doi:10.1007/s10668-018-0137-8
  • Deb, P., Babel, M.S., and Denis, A.F., 2018a. Multi-GCMs approach for assessing climate change impact on water resources in Thailand. Modeling Earth Systems and Environment, 4 (2), 825–839. doi:10.1007/s40808-018-0428-y
  • Deb, P., Kiem, A.S., and Willgoose, G., 2019a. A linked surface water-groundwater modelling approach to more realistically simulate rainfall–runoff non-stationarity in semi-arid regions. Journal of Hydrology, 575, 273–291. doi:10.1016/j.jhydrol.2019.05.039
  • Deb, P., Kiem, A.S., and Willgoose, G., 2019b. Mechanisms influencing non-stationarity in rainfall–runoff relationships in southeast Australia. Journal of Hydrology, 571, 749–764. doi:10.1016/j.jhydrol.2019.02.025
  • Dwarakish, G.S. and Ganasri, B.P., 2015. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1 (1), 1115691. doi:10.1080/23312041.2015.1115691
  • Fowler, K.J.A., et al., 2016. Simulating runoff under changing climatic conditions: revisiting an apparent deficiency of conceptual rainfall–runoff models. Water Resources Research, 52, 1820–1846. doi:10.1002/2015WR018068
  • Gallant, A.J.E., et al., 2012. Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrology and Earth System Science, 16 (7), 2049–2068. doi:10.5194/hess-16-2049-2012
  • Gan, T.Y., Dlamini, E.M., and Biftu, G.F., 1997. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192 (1–4), 81–103. doi:10.1016/S0022-1694(96)03114-9
  • Gao, C., et al., 2016. Hydrological model comparison and assessment: criteria from catchment scales and temporal resolution. Hydrological Science Journal, 61 (10), 1941–1951. doi:10.1080/02626667.2015.1057141
  • Garbrecht, J. and Martz, L.W., 2000. Topaz user manual: version3.1. Technical Report. Oklahoma.
  • Gelfan, A., et al., 2015. Testing the robustness of the physically-based ECOMAG model with respect to changing conditions. Hydrological Sciences Journal, 60 (7–8), 1266–1285. doi:10.1080/02626667.2014.935780
  • Ghosh, D.K., Wang, D., and Zhu, T., 2016. On the transition of base flow recession from early stage to late stage. Advances in Water Resources, 88, 8–13. doi:10.1016/J.ADVWATRES.2015.11.015
  • Gonsamo, A., Pellikka, P., and King, D.J., 2011. Large-scale leaf area index inversion algorithms from high-resolution airborne imagery. International Journal of Remote Sensing, 32 (14), 3897–3916. doi:10.1080/01431161003801302
  • Greets, S., et al., 2009. Simulating yield response of quinoa to water availability with AquaCrop. Agronomy Journal, 101, 498–508.
  • Gudmundsson, L., Greve, P., and Seneviratne, S.I., 2016. The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophysical Research Letters, 43 (13), 6985–6994. doi:10.1002/2016GL069763
  • Gupta, H.V., Sorooshian, S., and Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4 (2), 135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
  • Gyau-Boakye, P., and Schultz, G.A., 1994. Filling gaps in runoff time series in west africa. Hydrological Sciences Journal, 39 (6), 621–636. doi:10.1080/02626669409492784
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from ambient air temperature. American Society Agricultural and Biological Engineers, 1 (2), 96–99. doi:10.1016/j.jhydrol.2010.07.047
  • Jakeman, A.J., Littlewood, I.G., and Whitehead, P.G., 1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117 (1–4), 275–300. doi:10.1016/0022-1694(90)90097-H
  • Kannan, N., Anandhi, A., and Jeong, J., 2018. Estimation of stream health using flow-based indices. Hydrology, 5 (1), 20. doi:10.3390/hydrology5010020
  • Kiem, A.S., et al., 2016. Natural hazards in Australia: droughts. Climate Change, 139 (1), 37–54. doi:10.1007/s10584-016-1798-7
  • Kiem, A.S. and Verdon-Kidd, D.C., 2009. Climatic drivers of Victorian streamflow: is ENSO the dominant influence? Australasian Journal of Water Resources, 13 (1), 17–29. doi:10.1080/13241583.2009.11465357
  • Kiem, A.S. and Verdon-Kidd, D.C., 2010. Towards understanding hydroclimatic change in Victoria, Australia – preliminary insights into the “Big Dry”. Hydrology and Earth System Sciences, 14 (3), 433–445. doi:10.5194/hess-14-433-2010
  • Kiem, A.S. and Verdon-Kidd, D.C., 2011. Steps toward ‘useful’ hydroclimatic scenarios for water resource management in the Murray-Darling Basin. Water Resources Research, 47 (6), W00G06. doi:10.1029/2010WR009803
  • Kim, J. and Mohanty, B.P., 2016. Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling. Journal of Geophysical Research Atmospheres, 121 (2), 704–721. doi:10.1002/2015JD024067
  • Klemes, V., 1986. Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13–24. doi:10.1080/02626668609491024
  • Kumar, B., Lakshmi, V., and Patra, K.C., 2017. Evaluating the uncertainties in the SWAT model outputs due to DEM grid size and resampling techniques in a large Himalayan river basin. Journal of Hydrologic Engineering, 22 (9), 4017039. doi:10.1061/(ASCE)HE.1943-5584.0001569
  • Li, C.Z., et al., 2012. The transferability of hydrological models under nonstationary climatic conditions. Hydrology and Earth System Sciences, 16 (4), 1239–1254. doi:10.5194/hess-16-1239-2012
  • Lyne, V. and Hollick, M., 1979. Stochastic time-variable rainfall–runoff modelling. In: Hydrology and Water Resources Symposium. Perth: Institution of Engineers, Australia, 89–92.
  • Minet, J., et al., 2011. Effect of high-resolution spatial soil moisture variability on simulated runoff response using a distributed hydrologic model. Hydrology and Earth System Sciences, 15 (4), 1323–1328. doi:10.5194/hess-15-1323-2011
  • Misra, A.K., 2014. Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3 (1), 153–165. doi:10.1016/J.IJSBE.2014.04.006
  • Moeletsi, M.E., Walker, S., and Hamandawana, H., 2013. Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa. Physics and Chemistry of Earth, Parts A/B/C, 66, 4–15. doi:10.1016/j.pce.2013.08.003
  • Montanari, A., et al., 2013. ‘Panta Rhei—Everything Flows’: change in hydrology and society—The IAHS scientific decade 2013–2022. Hydrological Sciences Journal, 58 (6), 1256–1275. doi:10.1080/02626667.2013.809088
  • Montanari, A., Shoemaker, C.A., and van de Giesen, N., 2009. Introduction to special section on uncertainty assessment in surface and subsurface hydrology: an overview of issues and challenges. Water Resources Research, 45 (12), W00B00. doi:10.1029/2009WR008471
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. The Computer Journal, 7 (4), 308–313. doi:10.1093/comjnl/7.4.308
  • Pandey, R., Kumar, V., and Pandey, R.D., 2018. Analysis of flood routing in channels. International Journal of Engineering Development and Research, 6 (1), 11–18.
  • Pignotti, G., et al., 2017. Comparative analysis of HRU and grid-based SWAT models. Water, 9 (4), 272. doi:10.3390/w9040272
  • Pilgrim, D., Chapman, T., and Doran, D.G., 1988. Problems of rainfall–runoff modelling in arid and semiarid regions. Hydrological Sciences Journal, 33 (4), 379–400. doi:10.1080/02626668809491261
  • Rathjens, H., et al., 2015. Development of a grid-based version of the SWAT landscape model. Hydrological Processes, 29 (6), 900–914. doi:10.1002/hyp.10197
  • Rathjens, H. and Oppelt, N., 2012. SWATgrid: an interface for setting up SWAT in a grid-based discretization scheme. Computers & Geosciences, 45, 161–167. doi:10.1016/J.CAGEO.2011.11.004
  • Ries, F., et al., 2017. Controls on runoff generation along a steep climatic gradient in the Eastern Mediterranean. Journal of Hydrology: Regional Studies, 9, 18–33. doi:10.1016/j.ejrh.2016.11.001
  • Ritter, A. and Muñoz-Carpena, R., 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
  • Saft, M., et al., 2015. The influence of multiyear drought on the annual rainfall–runoff relationship: an Australian perspective. Water Resources Research, 51, 9127–9140. doi:10.1002/2014WR016259
  • Saft, M., et al., 2016. Bias in streamflow projections due to climate-induced shifts in catchment response. Geophysical Research Letters, 43, 1574–1581. doi:10.1002/2015GL067326
  • Sarr, B., 2012. Present and future climate change in the semi-arid region of West Africa: a crucial input for practical adaptation in agriculture. Atmospheric Science Letters, 13 (2), 108–112. doi:10.1002/asl.368
  • Scharffenberg, W., 2015. Hydrologic modeling system HEC-HMS user’s manual. Davis, CA: U.S. Army Corps of Engineers Institute for Water Resources.
  • Shimojima, E., et al., 2013. Observation of water and solute movement in a saline, bare soil, groundwater seepage area, Western Australia. Part 1: movement of water in near-surface soils in summer. Soil Research, 51, 288–300. doi:10.1071/SR12282
  • Sivapalan, M., 2006. Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. In: M. G. Anderson, ed. Encyclopedia of hydrological sciences. John Wiley & Sons: Chichester, UK, 1– 27. doi:10.1002/0470848944.hsa012
  • Sloan, P.G. and Moore, I.D., 1984. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, 20 (12), 1815–1822. doi:10.1029/WR020i012p01815
  • Smith, M.B., et al., 2012. Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, 418–419, 17–48. doi:10.1016/j.jhydrol.2011.08.056
  • Soh, Y.C., Roddick, F., and van Leeuwen, J., 2008. The future of water in Australia: the potential effects of climate change and ozone depletion on Australian water quality, quantity and treatability. Environmentalist, 28 (2), 158–165. doi:10.1007/s10669-007-9123-7
  • Sood, A. and Smakhtin, V., 2015. Global hydrological models: a review. Hydrological Sciences Journal, 60 (4), 549–565. doi:10.1080/02626667.2014.950580
  • Srivastava, A., Deb, P., and Kumari, N., 2020. Multi-model approach to assess the dynamics of hydrologic components in a tropical ecosystem. Water Resources Management, 34, 327–341. doi:10.1007/s11269-019-02452-z
  • Szabolcs, I., 1991. Soil classification related properties of salt affected soils. In: J.M. Kimble, ed.. 6th International soil correlation meeting – characterisation, classification and utilisation of cold aridisols and vertisols. Lincon, Nebraska: US Department of Agriculture, 204–207.
  • Tani, M., 1997. Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. Journal of Hydrology, 200, 84–109. doi:10.1016/S0022-1694(97)00018-8
  • Te Linde, A.H., et al., 2008. Comparing model performance of two rainfall–runoff models in the Rhine basin using different atmospheric forcing data sets. Hydrology and Earth System Science, 12, 943–957. doi:10.5194/hess-12-943-2008
  • Tegegne, G., Park, D.K., and Kim, Y.O., 2017. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66. doi:10.1016/j.ejrh.2017.10.002
  • Thirel, G., Andréassian, V., and Perrin, C., 2015. On the need to test hydrological models under changing conditions. Hydrological Sciences Journal, 60 (7–8), 1165–1173. doi:10.1080/02626667.2015.1050027
  • Uniyal, B., Jha, M.K., and Verma, A.K., 2015. Parameter identification and uncertainty analysis for simulating streamflow in a river basin of Eastern India. Hydrological Processes, 29 (17), 3744–3766. doi:10.1002/hyp.10446
  • van Dijk, A.I.J.M., et al., 2013. The Millennium Drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 49 (2), 1040–1057. doi:10.1002/wrcr.20123
  • Van Loon, A.F., 2015. Hydrological drought explained. WIREs Water, 2 (4), 359–392. doi:10.1002/wat2.1085
  • Van Loon, A.F., et al., 2016. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 20 (9), 3631–3650. doi:10.5194/hess-20-3631-2016
  • Vaze, J., et al., 2010. Climate non-stationarity - Validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394, 447–457. doi:10.1016/j.jhydrol.2010.09.018
  • Verdon-Kidd, D.C. and Kiem, A.S., 2009. Nature and causes of protracted droughts in southeast Australia: comparison between the federation, WWII, and big dry droughts. Geophysical Research Letters, 36 (22), L22707. doi:10.1029/2009GL041067
  • Vereecken, H., et al., 2008. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44 (4), W00D06. doi:10.1029/2008WR006829
  • Wagener, T., et al., 2007. Catchment classification and hydrologic similarity. Geography Compass, 1 (4), 901–931. doi:10.1111/j.1749-8198.2007.00039.x
  • Western, A. and Mckenzie, N., 2004. Soil hydrological properties of Australia. Canberra: CRC for Catchment Hydrology.
  • Willgoose, G. and Perera, H., 2001. A simple model of saturation excess runoff generation based on geomorphology, steady state soil moisture. Water Resources Research, 37 (1), 147–155. doi:10.1029/2000WR900265
  • Wu, S., Li, J., and Huang, G.H., 2008. A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Applied Geography, 28 (3), 210–223. doi:10.1016/j.apgeog.2008.02.006
  • Yu, B. and Zhu, Z., 2015. A comparative assessment of AWBM and SimHyd for forested watersheds. Hydrological Sciences Journal, 60 (7–8), 1200–1212. doi:10.1080/02626667.2014.961924
  • Zhang, D., et al., 2015. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecological Modelling, 301, 54–61. doi:10.1016/j.ecolmodel.2015.01.018
  • Zhang, G.P. and Savenije, H.H.G., 2005. Rainfall–runoff modelling in a catchment with a complex groundwater flow system: application of the representative elementary watershed (REW) approach. Hydrology and Earth System Sciences, 9, 243–261. doi:10.5194/hess-9-243-2005
  • Zhang, H.L., et al., 2013. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US. Hydrology and Earth System Sciences, 17 (7), 2735–2745. doi:10.5194/hess-17-2735-2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.