1,591
Views
3
CrossRef citations to date
0
Altmetric
Discussion

Water table variations in Atacama Desert alluvial fans: discussion of “Evidence of short-term groundwater recharge signal propagation from the Andes to the central Atacama Desert: a singular spectrum analysis approach”*

ORCID Icon, , , &
Pages 1606-1613 | Received 26 Sep 2019, Accepted 05 Mar 2020, Published online: 09 Jun 2020

References

  • Aravena, R., 1995. Isotope hydrology and geochemistry of Northern Chile groundwaters. Bulletin de l’Institut Français d’Études Andines, 24 (3), 495–503.
  • Blanco, N., et al., 2012. Levantamiento geologico para el fomento de la exploracion de recursos minerales e hidricos de la Cordillera de la Costa, Depresion Central y Precordillera de la Region de Tarapaca (20°-21°) – 7 mapas escala 1: 100.000. (No. IR-12-50). Santiago: SNGM.
  • Castillo Urrutia, O., 1960. El agua subterránea en el norte de la Pampa del Tamarugal. (No. 5). Santiago: Instituto de Investigaciones Geológicas.
  • Chaffaut, I., et al., 1998. Précipitations d’altitude du Nord-Chili, origine des sources de vapeur et données isotopiques. Bulletin de l’Institut Français d’Études Andines, 27 (3), 367–384.
  • Chávez, R.O., et al., 2016. 50 years of water extraction in the Pampa del Tamarugal basin: can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? Journal of Arid Environments, 124, 292–303. doi:10.1016/j.jaridenv.2015.09.007
  • deMarsily, G., 1986. Quantitative hydrogeology, groundwater hydrology for engineers. London: Academic Press, Inc. ed.
  • Evenstar, L.A., et al., 2017. Geomorphology on geologic timescales: evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru. Earth-Science Reviews, 171, 1–27. doi:10.1016/j.earscirev.2017.04.004
  • Fritz, P., et al., 1981. Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. Journal of Hydrology, 53 (1–2), 161–184. doi:10.1016/0022-1694(81)90043-3
  • Gamboa, C., et al., 2019. The origin of solutes in groundwater in a hyper-arid environment: A chemical and multi-isotope approach in the Atacama Desert, Chile. Science of the Total Environment, 690, 329–351. doi:10.1016/j.scitotenv.2019.06.356
  • Garreaud, R., Vuille, M., and Clement, A.C., 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194 (1–3), 5–22. doi:10.1016/S0031-0182(03)00269-4
  • Garreaud, R.D. and Aceituno, P., 2001. Interannual rainfall variability over the South American Altiplano. Journal of Climate, 14 (12), 2779–2789. doi:10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2
  • Hashemi, H., Berndtsson, R., and Persson, M., 2015. Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. Hydrological Sciences Journal, 60 (2), 336–350. doi:10.1080/02626667.2014.881485
  • Hogan, J.F., Phillips, F.M., and Scanlon, B.R., 2004. Groundwater recharge in a desert environment: the Southwestern United States. Water Science and Application 9. ed. Washington, DC: American Geophysical Union.
  • Houston, J., 2002. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrological Processes, 16 (15), 3019–3035. doi:10.1002/hyp.1086
  • Houston, J., 2006. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. International Journal of Climatology, 26 (15), 2181–2198. doi:10.1002/joc.1359
  • Houston, J., 2009. A recharge model for high altitude, arid, Andean aquifers. Hydrological Processes, 23 (16), 2383–2393. doi:10.1002/hyp.7350
  • Huggenberger, P. and Aigner, T., 1999. Introduction to the special issue on aquifer-sedimentology: problems, perspectives and modern approaches. Sedimentary Geology, 129 (3–4), 179–186. doi:10.1016/S0037-0738(99)00101-3
  • Jayne, R.S., et al., 2016. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile. Hydrogeology Journal, 24 (8), 1921–1937. doi:10.1007/s10040-016-1454-3
  • JICA, 1995. The study on the development of water resources in northern Chile, supporting report B: geology and groundwater. Santiago, Chile: JICA, DGA, PCI.
  • Jordan, T.E., et al., 2010. Uplift of the Altiplano-Puna plateau: a view from the west. Tectonics, 29 (TC5007), 1–31. doi:10.1029/2010TC002661
  • Lagos, M., et al., 2020. Challenges in determining soil moisture and evaporation fluxes using distributed temperature sensing methods. Journal of Environmental Management, 261, 110232. doi:10.1016/j.jenvman.2020.110232
  • Leduc, C., et al., 2006. Comment on “Estimating groundwater mixing ratios and their uncertainties using a statistical multi parameter approach” by Rueedi, J., Purtschert, R., Beyerle, U., Alberich, C., Kipfer, R. J. Hydrol., 2005 (305): 1–14. Journal of Hydrology, 318 (1–4), 3–6. doi:10.1016/j.jhydrol.2005.06.018
  • Lictevout, E. and Faysse, N., 2018. A doubly invisible aquifer: hydrogeological studies and actors’ strategies in the Pampa del Tamarugal Aquifer, Northern Chile. Water Alternatives, 11 (3), 592–606.
  • Magaritz, M., et al., 1990. Source of ground water in the deserts of Northern Chile: evidence of deep circulation of ground water from the Andes. Ground Water, 28 (4), 513–517. doi:10.1111/j.1745-6584.1990.tb01706.x
  • Marazuela, M.A., et al., 2019. Hydrodynamics of salt flat basins: the Salar de Atacama example. Science of the Total Environment, 651, 668–683. doi:10.1016/j.scitotenv.2018.09.190
  • Massuel, S., et al., 2006. Deep infiltration through a sandy alluvial fan in semiarid Niger inferred from electrical conductivity survey, vadose zone chemistry and hydrological modelling. Catena, 67 (2), 105–118. doi:10.1016/j.catena.2006.02.009
  • Nester, P.L., et al., 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences, 104 (50), 19724–19729. doi:10.1073/pnas.0705373104
  • Oyarzún, J. and Oyarzún, R., 2011. Sustainable development threats, inter-sector conflicts and environmental policy requirements in the Arid, Mining Rich, Northern Chile territory. Sustainable Development, 19 (4), 263–274. doi:10.1002/sd.441
  • Pakparvar, M., et al., 2017. Assessment of groundwater recharge influenced by floodwater spreading: an integrated approach with limited accessible data. Hydrological Sciences Journal, 62 (1), 147–164. doi:10.1080/02626667.2016.1183164
  • Pfeiffer, M., et al., 2018. Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary. Quaternary Science Reviews, 197, 224–245. doi:10.1016/j.quascirev.2018.08.001
  • Razack, M., et al., 1980. Étude de l’effet de marée océanique sur un aquifère carbonate cotier (Miocène de l’algarve — portugal). Journal of Hydrology, 45 (1–2), 57–69. doi:10.1016/0022-1694(80)90005-0
  • Rojas, R., 2005. Groundwater flow model of Pampa del Tamarugal Aquifer–Northern Chile. Leuven, Belgium: Katholieke Universiteit Leuven and Brussels, Belgium: Vrije Universiteit Brussel.
  • Rojas, R., et al., 2010. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile. Hydrology and Earth System Sciences, 14 (2), 171–192. doi:10.5194/hess-14-171-2010
  • Rojas, R. and Dassargues, A., 2007. Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeology Journal, 15 (3), 537–551. doi:10.1007/s10040-006-0084-6
  • Santoro, C.M., et al., 2018. The Tarapacá declaration: “a waterless people is a dead people”. Chungará Arica, 50 (2), 169–174. doi:10.4067/S0717-73562018000200169
  • Scanlon, B.R., et al., 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20 (15), 3335–3370. doi:10.1002/hyp.6335
  • Scanlon, B.R., Healy, R.W., and Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10 (1), 18–39. doi: 10.1007/s10040-0010176-2
  • Scanlon, B.R., Langford, R.P., and Goldsmith, R.S., 1999. Relationship between geomorphic settings and unsaturated flow in an arid setting. Water Resources Research, 35 (4), 983–999. doi:10.1029/98WR02769
  • Scheihing, K.W., 2018. Evidence of short-term groundwater recharge signal propagation from the Andes to the central Atacama Desert: a singular spectrum analysis approach. Hydrological Sciences Journal, 63 (8), 1255–1261. doi:10.1080/02626667.2018.1495838
  • Scheihing, K.W., Moya, C.E., and Tröger, U., 2017. Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile. Hydrogeology Journal, 25 (6), 1833–1852. doi:10.1007/s10040-017-1533-0
  • Sepúlveda, S.A., et al., 2014. Catastrophic, rainfall-induced debris flows in Andean villages of Tarapacá, Atacama Desert, northern Chile. Landslides, 11 (3), 481–491. doi:10.1007/s10346-014-0480-2
  • Shanafield, M. and Cook, P.G., 2014. Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology, 511, 518–529. doi:10.1016/j.jhydrol.2014.01.068
  • Simmers, I., et al., 1997. Recharge of phreatic aquifers in (semi-)arid areas: IAH International Contributions to Hydrogeology 19. Simmers, Rotterdam: A.A. Balkema. ed. I.
  • Thiéry, D., 2012. Code de calcul CATHERINE – principe et mode d’emploi. (No. BRGM/RP-61430-FR). Orléans, France: BRGM.
  • Valdés-Pineda, R., et al., 2014. Water governance in Chile: availability, management and climate change. Journal of Hydrology, 519, 2538–2567. doi:10.1016/j.jhydrol.2014.04.016
  • Viguier, B., et al., 2018. Multidisciplinary study for the assessment of the geometry, boundaries and preferential recharge zones of an overexploited aquifer in the Atacama Desert (Pampa del Tamarugal, Northern Chile). Journal of South American Earth Sciences, 86, 366–383. doi:10.1016/j.jsames.2018.05.018
  • Viguier, B., et al., 2019a. Changes in the conceptual model of the Pampa del Tamarugal Aquifer: implications for Central Depression water resources. Journal of South American Earth Sciences, 94, 102217. doi:10.1016/j.jsames.2019.102217
  • Viguier, B., et al., 2019b. Water table variations in the hyperarid Atacama Desert: role of the increasing groundwater extraction in the pampa del tamarugal (Northern Chile). Journal of Arid Environments, 168, 9–16. doi:10.1016/j.jaridenv.2019.05.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.