342
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A two-stage fuzzy-stochastic factorial analysis method for characterizing effects of uncertainties in hydrological modelling

, &
Pages 2057-2071 | Received 19 Nov 2019, Accepted 09 Apr 2020, Published online: 14 Jul 2020

References

  • Abbaspour, K.C., et al., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale swat model. Journal of Hydrology, 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027
  • Ahmadi, A., Nasseri, M., and Solomatine, D.P., 2019. Parametric uncertainty assessment of hydrological models: coupling UNEEC-P and a fuzzy general regression neural network. Hydrological Sciences Journal, 64 (9), 1080–1094. doi:10.1080/02626667.2019.1610565
  • Armstrong, R.L., et al., 2018. Runoff from glacier ice and seasonal snow in high Asia: separating melt water sources in river flow. Regional Environmental Change, 19, 1249–1261. doi:10.1007/s10113-018-1429-0
  • Arsenault, R. and Brissette, F.P., 2015. Continuous streamflow prediction in ungauged basins: the effects of equifinality and parameter set selection on uncertainty in regionalization approaches. Water Resources Research, 50, 6135–6153. doi:10.1002/2013WR014898
  • Behrouz, M.S., et al., 2020. A new tool for automatic calibration of the Storm Water Management Model (SWMM). Journal of Hydrology, 581, 124436. doi:10.1016/j.jhydrol.2019.124436
  • Bortolan, G. and Degani, R., 1985. A review of some methods for ranking fuzzy subsets. Fuzzy Sets and Systems, 15 (1), 1–19. doi:10.1016/0165-0114(85)90012-0
  • Brighenti, T.M., et al., 2019. Simulating sub-daily hydrological process with SWAT: a review. Hydrological Sciences Journal, 64 (12), 1415–1423. doi:10.1080/02626667.2019.1642477
  • Cheng, Q.B., et al., 2014. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov Chain Monte Carlo scheme. Journal of Hydrology, 519, 2202–2214. doi:10.1016/j.jhydrol.2014.10.008
  • Cretaux, J., Letolle, R., and Bergé-Nguyen, M., 2013. History of Aral Sea level variability and current scientific debates. Global and Planetary Change, 110, 99–113. doi:10.1016/j.gloplacha.2013.05.006
  • El-Helaly, S.N., Habib, B.A., and El-Rahman, M.K.A., 2018. Resolution V fractional factorial design for screening of factors affecting weakly basic drugs liposomal systems. European Journal of Pharmaceutical Sciences, 119, 249–258. doi:10.1016/j.ejps.2018.04.028
  • Enrique, M., et al., 2014. Identifiability analysis: towards constrained equifinality and reduced uncertainty in a conceptual model. Hydrological Sciences Journal, 59 (9), 1690–1703. doi:10.1080/02626667.2014.892205
  • Fan, Y.R., et al., 2016. Parameter uncertainty and temporal dynamics of sensitivity for hydrologic models: a hybrid sequential data assimilation and probabilistic collocation method. Environmental Modelling & Software, 86, 30–49. doi:10.1016/j.envsoft.2016.09.012
  • Gan, Y., et al., 2018. A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 564, 697–711. doi:10.1016/j.jhydrol.2018.07.055
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377, 80–91. doi:10.1016/j.jhydrol.2009.08.003
  • Han, F. and Zheng, Y., 2018. Joint analysis of input and parametric uncertainties in watershed water quality modeling: a formal Bayesian approach. Advances in Water Resources, 116, 77–94. doi:10.1016/j.advwatres.2018.04.006
  • Jiang, L., et al., 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599-600, 967–980. doi:10.1016/j.scitotenv.2017.05.012
  • Kai, W., Olsson, O., and Froebrich, J., 2007. Reliving the past in a changed environment: hydropower ambitions, opportunities and constraints in Tajikistan. Energy Policy, 35, 3815–3825. doi:10.1016/j.enpol.2007.01.024
  • Kelleher, C., Mcglynn, B., and Wagener, T., 2017. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology & Earth System Sciences, 21, 1–46. doi:10.5194/hess-21-3325-2017
  • Krysanova, V. and White, M., 2015. Advances in water resources assessment with SWAT-an overview. Hydrological Sciences Journal, 60 (5), 771–783.
  • Lee, S., et al., 2020. Use of multiple modules and Bayesian Model averaging to assess structural uncertainty of catchment-scale wetland modeling in a Coastal Plain landscape. Journal of Hydrology, 582, 124544. doi:10.1016/j.jhydrol.2020.124544
  • Lee, S.O. and Jung, Y., 2018. Efficiency of water use and its implications for a water-food nexus in the Aral Sea basin. Agricultural Water Management, 207, 80–90. doi:10.1016/j.agwat.2018.05.014
  • Leta, O.T., et al., 2015. Assessment of the different sources of uncertainty in a SWAT model of the river Senne (Belgium). Environmental Modelling & Software, 68, 129–146. doi:10.1016/j.envsoft.2015.02.010
  • Li, S., et al., 2017a. Development of a distributed hydrologic model to facilitate watershed management. Hydrological Sciences Journal, 62 (11), 1755–1771. doi:10.1080/02626667.2017.1351029
  • Li, Z., et al., 2019. A fuzzy gradient chance-constrained evacuation model for managing risks of nuclear power plants under multiple uncertainties. Journal of Environmental Informatics, 33, 129–138.
  • Malago, A., et al., 2018. The hillslope length impact on SWAT streamflow prediction in large basins. Journal of Environmental Informatics, 32, 82–97.
  • Montgomery, D.C., 2012. Design and analysis of experiments. 8th ed. New York: John Wiley &Sons.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I―a discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6
  • Panic, S., et al., 2015. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design. Chemosphere, 141, 87–93. doi:10.1016/j.chemosphere.2015.06.042
  • Phoa, F.K.H., Xu, H., and Weng, K.W., 2009. The use of nonregular fractional factorial designs in combination toxicity studies. Food & Chemical Toxicology, 47, 2183–2188. doi:10.1016/j.fct.2009.06.003
  • Remesan, R., Bray, M., and Mathew, J., 2018. Application of PCA and clustering methods in input selection of hybrid runoff models. Journal of Environmental Informatics, 31, 137–152.
  • Shen, H., et al., 2019. Remote sensing-based land surface change identification and prediction in the Aral Sea bed, Central Asia. International Journal of Environmental Science and Technology, 16, 2031–2046. doi:10.1007/s13762-018-1801-0
  • Sun, S., et al., 2017. A Bayesian method for missing rainfall estimation using a conceptual rainfall–runoff model. Hydrological Sciences Journal, 62 (15), 2456–2468. doi:10.1080/02626667.2017.1390317
  • Tegegne, G., et al., 2019. Hydrological modelling uncertainty analysis for different flow quantiles: a case study in two hydro-geographically different watersheds. Hydrological Sciences Journal, 64 (4), 473–489. doi:10.1080/02626667.2019.1587562
  • Tran, V.N. and Kim, J., 2019. Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations. Stochastic Environmental Research & Risk Assessment, 33 (7), 1453–1476. doi:10.1007/s00477-019-01703-0
  • Vrugt, J.A., et al., 2008. Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov Chain Monte Carlo simulation. Water Resources Research, 44, 5121–5127. doi:10.1029/2007WR006720
  • Wang, S., et al., 2015. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space. Journal of Hydrology, 529, 1129–1146. doi:10.1016/j.jhydrol.2015.09.034
  • Yager, R.R., 1999. Decision making with fuzzy probability assessments. IEEE Transactions on Fuzzy Systems, 7 (4), 462–467. doi:10.1109/91.784209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.