624
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Suitability of satellite-based hydro-climate variables and machine learning for streamflow modeling at various scale watersheds

ORCID Icon & ORCID Icon
Pages 2233-2248 | Received 19 Jul 2019, Accepted 29 Apr 2020, Published online: 31 Jul 2020

References

  • Adler, R.F., et al. 2001. Intercomparison of global precipitation products: the third Precipitation Intercomparison Project (PIP-3). Bulletin of the American Meteorological Society, 82 (7), 1377–1396. doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
  • Ahmad, S., Kalra, A., and Stephen, H., 2010. Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33 (1), 69–80. doi:10.1016/j.advwatres.2009.10.008
  • Arnold, J.G., et al. 2000. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology, 227 (1–4), 21–40. doi:10.1016/S0022-1694(99)00139-0
  • Bajwa, S. and Vibhava, V., 2009. A distributed artificial neural network model for watershed-scale rainfall-runoff modeling. Transactions of the ASABE, 52 (3), 813–823. doi:10.13031/2013.27402
  • Beck, H.E., et al. 2017. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21 (12), 6201–6217. doi:10.5194/hess-21-6201-2017
  • Beven, K.J., 2011. Rainfall-runoff modeling: the primer. Chichester, UK: John Wiley & Sons.
  • Blöschl, G., 2005. Rainfall‐runoff modeling of ungauged catchments. In: M.G. Anderson, ed. Encyclopedia of hydrological sciences. New York: John Wiley, Wiley Online Library.
  • Boegh, E., et al. 2009. Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: from field to macro-scale. Journal of Hydrology, 377 (3), 300–316. doi:10.1016/j.jhydrol.2009.08.029
  • Bourdin, D.R., Fleming, S.W., and Stull, R.B., 2012. Streamflow modeling: a primer on applications, approaches and challenges. Atmosphere-Ocean, 50 (4), 507–536. doi:10.1080/07055900.2012.734276
  • Brakenridge, G.R., et al., 2005. Space‐based measurement of river runoff. EOS, Transactions American Geophysical Union, 86 (19), 185–188.
  • Breiman, L., et al., 1984. Classification and regression trees. New York: Taylor & Francis.
  • Chang, W. and Chen, X., 2018. Monthly rainfall-runoff modeling at watershed scale: A comparative study of data-driven and theory-driven approaches. Water, 10 (9), 1116. doi:10.3390/w10091116
  • Chen, J.M., et al., 2005. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305 (1), 15–39.
  • Chen, X.-Y., Chau, K.-W., and Wang, W.-C., 2015. A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting. Journal of Hydroinformatics, 17 (5), 733–744. doi:10.2166/hydro.2015.095
  • Chiew, F., Stewardson, M., and McMahon, T., 1993. Comparison of six rainfall-runoff modeling approaches. Journal of Hydrology, 147 (1–4), 1–36. doi:10.1016/0022-1694(93)90073-I
  • Cisneros, J., 2014. Freshwater resources. In: C.B. Field, et al., eds.. Climate change: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom: Cambridge University Press, 1–1150.
  • Dawson, C.W. and Wilby, R., 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal, 43 (1), 47–66. doi:10.1080/02626669809492102
  • Demissie, M., et al. 2006. Evaluating the effectiveness of the Illinois River conservation reserve enhancement program in reducing sediment delivery. IAHS Publication, 306, 295.
  • Deo, R.C. and Şahin, M., 2016. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, 188 (2), 90. doi:10.1007/s10661-016-5094-9
  • Dhi, D., 2003. Mike-11: a modeling system for rivers and channels, reference manual. Horsholm, Denmark: DHI–Water and Development.
  • Didan, K., 2015. MOD13A3: MODIS/terra vegetation indices monthly L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC, 10. https://ind01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5067%2FMODIS%2FMOD13A3.006&data=02%7C01%7Csathyan.dhanasekaran%40integra.co.in%7C1a7ea24f2b7b4345260808d82e593d25%7C70e2bc386b4b43a19821a49c0a744f3d%7C0%7C0%7C637310308167990088&sdata=imXUUikZ5AV%2B8QOy6x%2FeMaVgTwD7NOhmoViY3v0YZ4A%3D&reserved=0 [Accessed 15 Sept 2018].
  • Elith, J., Leathwick, J.R., and Hastie, T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4), 802–813. doi:10.1111/j.1365-2656.2008.01390.x
  • Friedman, J., Hastie, T., and Tibshirani, R., 2001. The elements of statistical learning. New York: Springer series in statistics.
  • Gassman, P.W., et al., 2006. Upper Mississippi River Basin modeling system part 1: SWAT input data requirements and issues. In: V.P. Singh and Y.J. Xu, eds. Coastal Hydrology and Processes. Highlands Ranch, USA: Water Resources Publications, LLC, 103–115.
  • Herschy, R.W., 2009. Streamflow measurement. 3rd ed. New York: Taylor & Francis.
  • Hong, Y., et al., 2007. A first approach to global runoff simulation using satellite rainfall estimation. Water Resources Research, 43 (8). doi:10.1029/2006WR005739
  • Hsu, K.L., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall‐runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955
  • Hulley, G.C. and Hook, S.J., 2009. Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sensing of Environment, 113 (6), 1313–1318. doi:10.1016/j.rse.2009.02.018
  • Illinois Climate Network, 2015. Water and atmospheric resources monitoring program. Champaign, IL: Illinois State Water Survey.
  • Jha, M., et al., 2004. Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. Journal of Geophysical Research: Atmospheres, 109 (D9). doi:10.1029/2003JD003686
  • Jha, M., et al. 2006. Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT 1. JAWRA Journal of the American Water Resources Association, 42 (4), 997–1015. doi:10.1111/j.1752-1688.2006.tb04510.x
  • Jha, M.K., Gassman, P.W., and Arnold, J.G., 2007. Water quality modeling for the Raccoon River watershed using SWAT. Transactions of the ASABE, 50 (2), 479–493.
  • Khosravi, K., Mirzai, H., and Saleh, I., 2013. Assessment of empirical methods of runoff estimation by statistical test (Case study: Banadaksadat Watershed, Yazd Province). International journal of Advanced Biological and Biomedical Research 1 (3), 1–17.
  • Kratzert, F., et al., 2018. Rainfall-runoff modeling using long short-term memory (LSTM) networks. Earth Syst. Sci., 22, 6005–6022. https://ind01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5194%2Fhess-22-6005-2018&data=02%7C01%7Csathyan.dhanasekaran%40integra.co.in%7C1a7ea24f2b7b4345260808d82e593d25%7C70e2bc386b4b43a19821a49c0a744f3d%7C0%7C0%7C637310308167990088&sdata=uNw5vmd7GjgJc%2FXlOiSBDHNnaTwyyXrtitj2voTFnIw%3D&reserved=0
  • Kummerow, C., et al. 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15 (3), 809–817. doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
  • Landerer, F.W. and Swenson, S.C., 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48 (4). doi:10.1029/2011WR011453
  • Liston, G., Sud, Y., and Wood, E., 1994. Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: application to the Mississippi basin. Journal of Applied Meteorology, 33 (3), 394–405. doi:10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2
  • Liu, T., et al., 2012. On the usefulness of remote sensing input data for spatially distributed hydrological modeling: case of the Tarim River basin in China. Hydrological Processes, 26 (3), 335–344.
  • Mahmoud, S.H., 2014. Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration. Catena, 120, 111–121.
  • Markstrom, S.L., et al., 2015. PRMS-IV, the precipitation-runoff modeling system, version 4. Reston, VA: US Geological Survey Techniques and Methods. (6-B7).
  • Maurer, E.P. and Lettenmaier, D.P., 2003. Predictability of seasonal runoff in the Mississippi River basin. Journal of Geophysical Research: Atmospheres, 108, D16.
  • Melesse, A.M. and Graham, W.D., 2004. Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS. JAWRA Journal of the American Water Resources Association, 40 (4), 863–879. doi:10.1111/j.1752-1688.2004.tb01051.x
  • Milewski, A., et al. 2019a. Multi-scale hydrologic sensitivity to climatic and anthropogenic changes in Northern Morocco. Geosciences, 10 (1), 13. doi:10.3390/geosciences10010013
  • Milewski, A., Elkadiri, R., and Durham, M., 2015. Assessment and intercomparison of TMPA satellite precipitation products in varying climatic and topographic regimes. Remote Sensing, 7 (5), 5697–5717. doi:10.3390/rs70505697
  • Milewski, M.A., et al., 2019b. Spatial downscaling of GRACE TWSA data to identify spatiotemporal groundwater level trends in the Upper Floridan Aquifer, Georgia, USA. Remote Sensing, 11 (23), 2756.
  • Milly, P.C., Dunne, K.A., and Vecchia, A.V., 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438 (7066), 347–350. doi:10.1038/nature04312
  • Minns, A. and Hall, M., 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41 (3), 399–417. doi:10.1080/02626669609491511
  • Moriasi, D.N., et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mutlu, E., et al. 2008. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes, 22 (26), 5097–5106. doi:10.1002/hyp.7136
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Neitsch, S.L., et al., 2011. Soil and water assessment tool theoretical documentation version 2009. College Station, TX: Texas A & M University, Texas Water Resources Institute Technical Report No. 406.
  • NRCS, 2010. Assessment of the effects of conservation practices on cultivated cropland in the upper Mississippi River basin. Washington, D.C.: US Department of Agriculture, Natural Resources Conservation Service.
  • Perrin, C., et al. 2007. Impact of limited streamflow data on the efficiency and the parameters of rainfall—runoff models. Hydrological Sciences Journal, 52 (1), 131–151. doi:10.1623/hysj.52.1.131
  • Rajurkar, M., Kothyari, U., and Chaube, U., 2002. Artificial neural networks for daily rainfall—runoff modeling. Hydrological Sciences Journal, 47 (6), 865–877. doi:10.1080/02626660209492996
  • Riad, S., et al. 2004. Rainfall-runoff model using an artificial neural network approach. Mathematical and Computer Modeling, 40 (7–8), 839–846. doi:10.1016/j.mcm.2004.10.012
  • Schapire, R.E., 2003. The boosting approach to machine learning: an overview. In: D.D Denison, M.H. Hansen, C.C. Holmes, B. Mallick, and B. Yu., eds. Nonlinear estimation and classification. Lecture notes in statistics, vol 171. New York, NY: Springer, 149–171.
  • Schilling, K.E., et al., 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: historical effects and future directions. Water Resources Research, 44 (7). doi:10.1029/2007WR006644
  • Schilling, K.E., et al. 2010. Quantifying the effect of land use land cover change on increasing discharge in the Upper Mississippi River. Journal of Hydrology, 387 (3–4), 343–345. doi:10.1016/j.jhydrol.2010.04.019
  • Seo, Y., Kim, S., and Singh, V., 2018. Machine learning models coupled with variational mode decomposition: A new approach for modeling daily rainfall-runoff. Atmosphere, 9 (7), 251. doi:10.3390/atmos9070251
  • Seyoum, M.W., Kwon, D., and Milewski, M.A., 2019. Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system. Remote Sensing, 11 (7), 824. doi:10.3390/rs11070824
  • Seyoum, W.M., 2018. Characterizing water storage trends and regional climate influence using GRACE observation and satellite altimetry data in the Upper Blue Nile River Basin. Journal of Hydrology, 566, 274–284. doi:10.1016/j.jhydrol.2018.09.025
  • Seyoum, W.M. and Milewski, A.M., 2016. Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Advances in Water Resources, 94, 31–44. doi:10.1016/j.advwatres.2016.04.014
  • Seyoum, W.M. and Milewski, A.M., 2017. Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains. Advances in Water Resources, 110, 279–290. doi:10.1016/j.advwatres.2017.10.021
  • Seyoum, W.M., Milewski, A.M., and Durham, M.C., 2015. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa. Hydrological Processes, 29 (19), 4312–4324. doi:10.1002/hyp.10490
  • Shang, Q., et al. 2019. Downscaling of GRACE datasets based on relevance vector machine using InSAR time series to generate maps of groundwater storage changes at local scale. Journal of Applied Remote Sensing, 13 (4), 048503. doi:10.1117/1.JRS.13.048503
  • Srinivasan, R., Zhang, X., and Arnold, J., 2010. SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE, 53 (5), 1533–1546. doi:10.13031/2013.34903
  • Steitz, D., et al., 2002. GRACE launch. Press Kit. Pasadena, CA: Jet Propulsion Laboratory/NASA.
  • Tanty, R. and Desmukh, T.S., 2015. Application of artificial neural network in hydrology—A review. International Journal of Engineering Research and Technology, 4, 184–188.
  • Taormina, R., Chau, K.-W., and Sivakumar, B., 2015. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529, 1788–1797. doi:10.1016/j.jhydrol.2015.08.008
  • Tobin, K.J. and Bennett, M.E., 2010. Adjusting satellite precipitation data to facilitate hydrologic modeling. Journal of Hydrometeorology, 11 (4), 966–978. doi:10.1175/2010JHM1206.1
  • Tokar, A.S. and Johnson, P.A., 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4 (3), 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232)
  • USACE, 2006. (U.S. Army Corps of Engineers) Illinois River Basin restoration comprehensive plan with integrated environmental assessment, public review draft, February 2006, Rock Island District. Rock Island, IL: USACE.
  • Wan, Z., 2008. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112 (1), 59–74. doi:10.1016/j.rse.2006.06.026
  • Wan, Z., Hook, S., and Hulley, G., 2015. MOD11C3 MODIS/terra land surface temperature/emissivity monthly L3 global 0.05 deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://ind01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5067%2FMODIS%2FMOD11C3.006&data=02%7C01%7Csathyan.dhanasekaran%40integra.co.in%7C1a7ea24f2b7b4345260808d82e593d25%7C70e2bc386b4b43a19821a49c0a744f3d%7C0%7C0%7C637310308167990088&sdata=it8TzklPDF9phTnW4r4LdNVmILiVdfwz9dlCqjwd8jE%3D&reserved=0 [Accessed 01 Sept 2018].
  • Yaseen, Z.M., et al., 2017. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. Journal of Hydrology, 554, 263–276. doi:10.1016/j.jhydrol.2017.09.007
  • Yen, H., et al. 2016. Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS). Water, 8 (4), 164. doi:10.3390/w8040164
  • Zhang, X., et al., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews. Climate Change, 2 (6), 851–870.
  • Zhao, H., et al. 2015. Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. Journal of Geographical Sciences, 25 (2), 177–195. doi:10.1007/s11442-015-1161-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.