516
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discharge estimation for medium-sized river using multi-temporal remote sensing data: a case study in Brazil

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2402-2418 | Received 29 Jan 2020, Accepted 24 Jun 2020, Published online: 02 Sep 2020

References

  • Alsdorf, D.E., Rodríguez, E., and Lettenmaier, D.P., 2007. Measuring surface water from space. Reviews of Geophysics, 45 (2). doi:10.1029/2006RG000197
  • ANA, 2018. São Francisco [online]. Available from: http://www3.ana.gov.br/portal/ANA/sala-de-situacao/sao-francisco. [Accessed 9 May 2018].
  • Ashmore, P. and Sauks, E., 2006. Prediction of discharge from water surface width in a braided river with implications for at a station hydraulic geometry. Water Resources Research, 42 (3), 2006. doi:10.1029/2005WR003993
  • Canty, M.J., 2014. Image analysis, classification and change detection in remote sensing: with algorithms for ENVI/IDL and Python. Boca Raton, FL: CRC Press.
  • Chu, Z.X., et al., 2006. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images. Marine Geology, 227 (1–2), 13–30. doi:10.1016/j.margeo.2005.11.013
  • de Oliveira, L.M., Maillard, P., and de Andrade Pinto, E.J., 2017. Application of a land cover pollution index to model non-point pollution sources in a Brazilian watershed. Catena, 150, 124–132. doi:10.1016/j.catena.2016.11.015
  • Elmi, O., Tourian, M.J., and Sneeuw, N., 2015. River discharge estimation using channel width from satellite imagery. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan: IEEE, 727–730.
  • ESA (European Space Agency), 2018. Sentinel-1 - the SAR imaging constellation for land and ocean services [online]. Available from: https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1. [Accessed 9 May 2018].
  • Euclydes, H.P., Ferreira, P.A., and Filho, R.F.F., 2005. Atlas digital das águas de Minas: uma ferramenta para o planejamento e gestão dos recursos hídricos. [CD-ROM]. Belo Horizonte: Ruralminas/UFV.
  • Ferguson, R.I., 1986. River loads underestimated by rating curves. Water Resources Research, 22 (1), 74–76. doi:10.1029/WR022i001p00074
  • Frappart, F., et al., 2005. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, 99 (4), 387–399. doi:10.1016/j.rse.2005.08.016
  • Fryirs, K.A. and Brierley, G.J., 2012. Geomorphic analysis of river systems: an approach to reading the landscape. Hoboken: John Wiley & Sons.
  • Gleason, C.J. and Smith, L.C., 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 111 (13), 4788–4791. doi:10.1073/pnas.1317606111
  • Gleason, C.J., Smith, L.C., and Lee, J., 2014. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: sensitivity to river form and optimization parameters. Water Resources Research, 50 (12), 9604–9619. doi:10.1002/2014WR016109
  • Gleason, C.J. and Wang, J., 2015. Theoretical basis for at many stations hydraulic geometry. Geophysical Research Letters, 42 (17), 7107–7114. doi:10.1002/2015GL064935
  • Haas, E.M., Bartholomé, E., and Combal, B., 2009. Time series analysis of optical remote sensing data for the mapping of temporary surface water bodies in sub-Saharan western Africa. Journal of Hydrology, 370 (1–4), 52–63. doi:10.1016/j.jhydrol.2009.02.052
  • James, G., et al., 2013. An introduction to statistical learning. New York: Springer.
  • Jensen, J.R., 2006. Remote sensing of the environment: an earth resource perspective. Upper Saddle River, NJ: Prentice Hall.
  • Kim, D., et al., 2019. Ensemble learning regression for estimating river discharges using satellite altimetry data: Central Congo River as a Test-bed. Remote Sensing of Environment, 221, 741–755. doi:10.1016/j.rse.2018.12.010
  • Knighton, A.D., 1974. Variation in width-discharge relation and some implications for hydraulic geometry. Geological Society of America Bulletin, 85 (7), 1069–1076. doi:10.1130/0016-7606(1974)85<1069:VIWRAS>2.0.CO;2
  • Koblinsky, C., et al., 1993. Measurements of river level variations with satellite altimetry. Water Resources Research, 29 (6), 1839–1848. doi:10.1029/93WR00542
  • Kuhn, M. and Kjell, J., 2013. Applied predictive modeling. New York: Springer.
  • Leopold, L.B. and Maddock, T., 1953. The hydraulic geometry of stream channels and some physiographic implications. Washington, DC: US Government Printing Office, 253.
  • Maillard, P., 2020 (in press). Using time series of Sentinel-1 images to produce dry bathymetry of rivers. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2020, 387–394. doi:10.5194/isprs-annals-V-3-2020-387-2020.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mueller, N., et al., 2016. Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341–352. doi:10.1016/j.rse.2015.11.003
  • Nace, R.L., 1964. The international hydrological decade. Eos, Transactions American Geophysical Union, 45 (3), 413–421. doi:10.1029/TR045i003p00413
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Ouarda, T., et al., 2001. Regional flood frequency estimation with canonical correlation analysis. Journal of Hydrology, 254 (1–4), 157–173. doi:10.1016/S0022-1694(01)00488-7
  • Ouarda, T., et al., 2018. Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches. Environmental Modelling & Software, 109, 256–271. doi:10.1016/j.envsoft.2018.08.031
  • Pavelsky, T.M., et al., 2014. Assessing the potential global extent of SWOT river discharge observations. Journal of Hydrology, 519, 1516–1525. doi:10.1016/j.jhydrol.2014.08.044
  • Pekel, J.F., et al., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540 (7633), 418–422. doi:10.1038/nature20584
  • Pôssa, É.M., et al., 2018. On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data. In: Proc. SPIE 10783. Remote Sensing for Agriculture, Ecosystems, and Hydrology XX. Berlin: International Society for Optics and Photonics.
  • Pôssa, É.M. and Maillard, P., 2018. Precise delineation of small water bodies from sentinel-1 data using support vector machine classification. Canadian Journal of Remote Sensing, 44 (3), 179–190. doi:10.1080/07038992.2018.1478723
  • Shiklomanov, I.A., 1993. World freshwater resources. In: P.H. Gleick, ed. Water in crisis: a guide to the world’s fresh water resources. Oxford, UK: Oxford University Press, 13–24.
  • Sichangi, A., Wang, L., and Hu, Z., 2018. Estimation of river discharge solely from remote-sensing derived data: an initial study over the Yangtze river. Remote Sensing, 10 (9), 1385. doi:10.3390/rs10091385
  • Singh, V.P. and Zhang, L., 2008. At-a-station hydraulic geometry relations, 1: theoretical development. Hydrological Processes: An International Journal, 22 (2), 189–215. doi:10.1002/hyp.6411
  • Smith, L.C., et al., 1995. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: first results. Water Resources Research, 31 (5), 1325–1329. doi:10.1029/95WR00145
  • Smith, L.C., et al., 1996. Estimation of discharge from braid rivers using synthetic apertureradar imagery: potential application to ungauged basins. Water Resources Research, 32 (7), 2021–2034. doi:10.1029/96WR00752
  • Smith, L.C. and Pavelsky, T.M., 2008. Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resources Research, 44 (3). doi:10.1029/2007WR006133
  • Sun, W.C., Ishidaira, H., and Bastola, S., 2010. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrology and Earth System Sciences, 14 (10), 2011–2022. doi:10.5194/hess-14-2011-2010
  • Tang, Q., et al., 2009. Remote sensing: hydrology. Progress in Physical Geography, 33 (4), 490–509. doi:10.1177/0309133309346650
  • Tarpanelli, A., et al., 2013. Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sensing of Environment, 136, 47–55. doi:10.1016/j.rse.2013.04.010
  • Tarpanelli, A., et al., 2019. Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 57 (1), 329–341. doi:10.1109/TGRS.2018.2854625
  • The Ad Hoc Committee Group, et al., 2001. Global water data: a newly endangered species. EOS Transactions. American Geophysical Union, 82 (5), 54–58. doi:10.1029/01EO00031
  • Tourian, M.J., et al., 2016. Spatiotemporal densification of river water level time series by multimission satellite altimetry. Water Resources Research, 52 (2), 1140–1159. doi:10.1002/2015WR017654
  • Villar, R.E., et al., 2013. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. Journal of South American Earth Sciences, 44, 45–54. doi:10.1016/j.jsames.2012.11.006
  • Wass, P.D., et al., 1997. Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Science of the Total Environment, 194, 263–283. doi:10.1016/S0048-9697(96)05370-3
  • Willmott, C.J. and Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30 (1), 79–82. doi:10.3354/cr030079
  • Xu, K., et al., 2004. Estimating river discharge from very high‐resolution satellite data: a case study in the Yangtze River, China. Hydrological Processes, 18 (10), 1927–1939. doi:10.1002/hyp.1458
  • Zhang, J., et al., 2004. Estimation of river discharge from non-trapezoidal open channel using QuickBird-2 satellite imagery. Hydrological Sciences Journal, 49 (2). doi:10.1623/hysj.49.2.247.34831

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.