643
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Multi-site statistical downscaling of precipitation using generalized hierarchical linear models: a case study of the imperilled Lake Urmia basin

ORCID Icon, , &
Pages 2466-2481 | Received 05 Dec 2019, Accepted 09 Jul 2020, Published online: 05 Oct 2020

References

  • Abbasian, M., Moghim, S., and Abrishamchi, A., 2018. Performance of the general circulation models in simulating temperature and precipitation over Iran. Theoretical and Applied Climatology, 135 (3–4), 1465–1483. doi:10.1007/s00704-018-2456-y.
  • Abbaspour, M. and Nazaridoust, A., 2007. Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach. International Journal of Environmental, 64 (2), 161–169. doi:10.1080/00207230701238416.
  • AghaKouchak, A., et al., 2015. Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research, 41 (1), 307–311. doi:10.1016/j.jglr.2014.12.007.
  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. doi:10.1109/tac.1974.1100705.
  • Alizadeh-Choobari, O., et al., 2016. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. International Journal of Climatology, 36 (13), 4276–4286. doi:10.1002/joc.4630.
  • Azarnivand, A., Hashemi-Madani, F., and Banihabib, M., 2015. Extended fuzzy analytic hierarchy process approach in water and environmental management (case study: lake Urmia Basin, Iran). Environmental Earth Sciences, 73 (1), 13–26. doi:10.1007/s12665-014-3391-6.
  • Baigorria, G.A. and Jones, J.W., 2010. GiST: A stochastic model for generating spatially and temporally correlated daily rainfall data. Journal of Climate, 23 (22), 5990–6008. doi:10.1175/2010jcli3537.1.
  • Bardossy, A. and Plate, E.J., 1992. Space–time models for daily rainfall using atmospheric circulation patterns. Water Resources Research, 28 (5), 1247–1259. doi:10.1029/91wr02589.
  • Bates, D., et al., 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67 (1), 1. doi:10.18637/jss.v067.i01.
  • Beecham, S., Rashid, M., and Chowdhury, R.K., 2014. Statistical downscaling of multi-site daily rainfall in a South Australian catchment using a Generalized Linear Model. International Journal of Climatology, 34 (14), 3654–3670. doi:10.1002/joc.3933.
  • Booker, D. and Dunbar, M., 2008. Predicting river width, depth and velocity at ungauged sites in England and Wales using multilevel models. Hydrological Processes, 22 (20), 4049–4057. doi:10.1002/hyp.7007.
  • Cannon, A. and Whitfield, P., 2002. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology, 259 (1–4), 136–151. doi:10.1016/s0022-1694(01)00581-9.
  • Chandler, R.E., 2002. Generalized linear modelling for daily climate time series (software and user guide). London, England: Department of Statistical Science, University College London.
  • Chaudhari, S., et al., 2018. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology, 560, 342–353. doi:10.1016/j.jhydrol.2018.03.034
  • Christensen, O.B., et al., 2001. Internal variability of regional climate models. Climate Dynamics, 17 (11), 875–887. doi:10.1007/s003820100154.
  • Clarke, R., 2001. Separation of year and site effects by generalized linear models in regionalization of annual floods. Water Resources Research, 37 (4), 979–986. doi:10.1029/2000wr900370.
  • Das, J. and Umamahesh, N.V., 2016. Downscaling monsoon rainfall over river godavari basin under different climate-change scenarios. Water Resources Management, 30 (15), 5575–5587. doi:10.1007/s11269-016-1549-6.
  • Dempster, A.P., Laird, N.M., and Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39B, 1–39.
  • Duan, Q., et al., 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30 (5), 1371–1386. doi:10.1016/j.advwatres.2006.11.014.
  • Fazel, N., et al., 2018. Regionalization of precipitation characteristics in Iran’s Lake Urmia basin. Theoretical and Applied Climatology, 132 (1–2), 363–373. doi:10.1007/s00704-017-2090-0.
  • Fealy, R. and Sweeney, J., 2007. Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. International Journal of Climatology, 27 (15), 2083–2094. doi:10.1002/joc.1506.
  • Frost, A., et al., 2011. A comparison of multi-site daily rainfall downscaling techniques under Australian conditions. Journal of Hydrology, 408 (1–2), 1–18. doi:10.1016/j.jhydrol.2011.06.021.
  • Fu, G., Chiew, F.H.S., and Shi, X., 2018. Generation of multi-site stochastic daily rainfall with four weather generators: a case study of Gloucester catchment in Australia. Theoretical and Applied Climatology, 134 (3–4), 1027–1046. doi:10.1007/s00704-017-2306-3.
  • Furrer, E. and Katz, R., 2007. Generalized linear modelling approach to stochastic weather generators. Climate Research, 34, 129–144. doi:10.3354/cr034129
  • Gelman, A. and Hill, J., 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge: University Press. doi:10.1017/cbo9780511790942
  • Goly, A., Teegavarapu, R.S.V., and Mondal, A., 2014. Development and evaluation of statistical downscaling models for monthly precipitation. Earth Interactions, 18 (18), 1–28. doi:10.1175/ei-d-14-0024.1.
  • Hamidi-Razi, H., et al., 2018. Investigating the restoration of Lake Urmia using a numerical modelling approach. Journal of Great Lakes Research. doi:10.1016/j.jglr.2018.10.002
  • Hanel, M. and Buishand, T., 2015. Assessment of the sources of variation in changes of precipitation characteristics over the rhine basin using a linear mixed-effects model. Journal of Climate, 28 (17), 6903–6919. doi:10.1175/jcli-d-14-00775.1.
  • Harpham, C. and Wilby, R.L., 2005. Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology, 312 (1–4), 235–255. doi:10.1016/j.jhydrol.2005.02.020.
  • Harrold, T.I., Sharma, A., and Sheather, S.J., 2003. A non-parametric model for stochastic generation of daily rainfall occurrence. Water Resources Research, 39 (10), 1300. doi:10.1029/2003wr002182.
  • Hayhoe, H., 2000. Improvements of stochastic weather data generators for diverse climates. Climate Research, 14, 75–87. doi:10.3354/cr014075
  • Hoeting, J.A., et al., 1999. Bayesian model averaging: a tutorial. Statistical Science, 14 (4), 382–417.
  • IPCC. 2007. Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 996.
  • Jeong, D., et al., 2013. A multi-site statistical downscaling model for daily precipitation using global scale GCM precipitation outputs. International Journal of Climatology, 33 (10), 2431–2447. doi:10.1002/joc.3598.
  • Jones, R.G., et al., 2004. Generating high resolution climate change scenarios using PRECIS. Exeter: Met Office Hadley Centre.
  • Kamruzzaman, M., Beecham, S., and Metcalfe, A., 2016. Estimation of trends in rainfall extremes with mixed effects models. Atmospheric Research, 168, 24–32. doi:10.1016/j.atmosres.2015.08.018
  • Kanamitsu, M., et al., 2002. NCEP–DOE AMIP-II Reanalysis (R-2). B. AmBulletin of the American Meteorological Society, 83 (11), 1631–1643. doi:<1631:nar>10.1175/BAMS-83-11-1631.
  • Kannan, S. and Ghosh, S., 2013. A nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basin. Water Resources Research, 49 (3), 1360–1385. doi:10.1002/wrcr.20118.
  • Khazaei, B., et al., 2019. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 569, 203–217. doi:10.1016/j.jhydrol.2018.12.004
  • Kim, Y., et al., 2012. Reducing overdispersion in stochastic weather generators using a generalized linear modelling approach. Climate Research, 53 (1), 13–24. doi:10.3354/cr01071.
  • Kleiber, W., Katz, R.W., and Rajagopalan, B., 2012. Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resources Research, 48 (1), 1. doi:10.1029/2011wr011105.
  • Kleiber, W., Katz, R.W., and Rajagopalan, B., 2013. Daily minimum and maximum temperature simulation over complex terrain. The Annals of Applied Statistics, 7 (1), 588–612. doi:10.1214/12-aoas602.
  • Lee, T., Ouarda, T.B.M.J., and Jeong, C., 2012. Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection. Journal of Hydrology, 452-453, 161–171. doi:10.1016/j.jhydrol.2012.05.047
  • Lessels, J.S. and Bishop, T.F.A., 2013. Estimating water quality using linear mixed models with stream discharge and turbidity. Journal of Hydrology, 498, 13–22. doi:10.1016/j.jhydrol.2013.06.006
  • Li, H., Sheffield, J., and Wood, E., 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental panel on climate change AR4 models using equidistant quantile matching. Journal of Geophysical Research, 115, D10. doi:10.1029/2009jd012882
  • Liang, Z., et al., 2013. Application of bayesian model averaging approach to multimodel ensemble hydrologic forecasting. Journal of Hydrologic Engineering, 18 (11), 1426–1436. doi:10.1061/(asce)he.1943-5584.0000493.
  • Lin, G.-F., Chang, M.-J., and Wu, J.-T., 2016. A hybrid statistical downscaling method based on the classification of rainfall patterns. Water Resources Management, 31 (1), 377–401. doi:10.1007/s11269-016-1532-2.
  • Liu, W., et al., 2012. A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 111 (3–4), 585–600. doi:10.1007/s00704-012-0692-0.
  • Loukas, A., Vasiliades, L., and Tzabiras, J., 2008. Climate change effects on drought severity. Advances in Geosciences, 17, 23–29. doi:10.5194/adgeo-17-23-2008
  • Mandal, S., Srivastav, R.K., and Simonovic, S.P., 2016. Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. Journal of Hydrology, 538, 49–62. doi:10.1016/j.jhydrol.2016.04.009
  • Maurer, E. and Pierce, D., 2014. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrology and Earth System Sciences, 18 (3), 915–925. doi:10.5194/hess-18-915-2014.
  • Mehrotra, R. and Sharma, A., 2006. Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Advances in Water Resources, 29 (7), 987–999. doi:10.1016/j.advwatres.2005.08.007.
  • Mehrotra, R. and Sharma, A., 2010. Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resources Research, 46 (7), W07526. doi:10.1029/2009wr008423.
  • Mehrotra, R. and Sharma, A., 2016. A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: implications for downscaling. Journal of Climate, 29 (10), 3519–3539. doi:10.1175/jcli-d-15-0356.1.
  • Mehrotra, R., et al., 2013. Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model. Journal of Hydrology, 488, 84–100. doi:10.1016/j.jhydrol.2013.02.046
  • Mehrotra, R., Srikanthan, R., and Sharma, A., 2006. A comparison of three stochastic multi-site precipitation occurrence generators. Journal of Hydrology, 331 (1–2), 280–292. doi:10.1016/j.jhydrol.2006.05.016.
  • Nahar, J., Johnson, F., and Sharma, A., 2017. Assessing the extent of non-stationary biases in GCMs. Journal of Hydrology, 549, 148–162. doi:10.1016/j.jhydrol.2017.03.045
  • Najafi, M.R. and Moradkhani, H., 2016. Ensemble Combination of Seasonal Streamflow Forecasts. Journal of Hydrologic Engineering, 21 (1), 04015043. doi:10.1061/(asce)he.1943-5584.0001250.
  • Nash, J. and Sutcliffe, J., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Nasseri, M., Tavakol-Davani, H., and Zahraie, B., 2013. Performance assessment of different data mining methods in statistical downscaling of daily precipitation. Journal of Hydrology, 492, 1–14. doi:10.1016/j.jhydrol.2013.04.017
  • Nassiri, M., et al., 2006. Potential impact of climate change on rainfed wheat production in Iran. Archives of Agronomy and Soil Science, 52 (1), 113–124. doi:10.1080/03650340600560053.
  • Nouri, M., Homaee, M., and Bannayan, M., 2017. Climate variability impacts on rainfed cereal yields in west and northwest Iran. International Journal of Biometeorology, 61 (9), 1571–1583. doi:10.1007/s00484-017-1336-y.
  • Okkan, U. and Kirdemir, U., 2016. Downscaling of monthly precipitation using CMIP5 climate models operated under RCPs. Meteorological Applications, 23 (3), 514–528. doi:10.1002/met.1575.
  • Pang, B., et al., 2017. Statistical downscaling of temperature with the random forest model. Advances in Meteorology, 2017, 1–11. doi:10.1155/2017/7265178
  • Peel, M.C., Finlayson, B.L., and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11 (5), 1633–1644. doi:10.5194/hess-11-1633-2007.
  • Peixoto, J. and Oort, A., 1996. The climatology of relative humidity in the atmosphere. Journal of Climate, 9 (12), 3443–3463. doi:10.1175/1520-0442(1996)009<3443:tcorhi>2.0.co;2.
  • Qian, B., Corte-Real, J., and Xu, H., 2002. Multisite stochastic weather models for impact studies. International Journal of Climatology, 22 (11), 1377–1397. doi:10.1002/joc.808.
  • Raftery, A., et al., 2005. Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133 (5), 1155–1174. doi:10.1175/mwr2906.1.
  • Rajagopalan, B. and Lall, U., 1999. A K-nearest neighbour simulator for daily precipitation and other weather variables. Water Resources Research, 35 (10), 3089–3101. doi:10.1029/1999wr900028.
  • Rashid, M., Beecham, S., and Chowdhury, R., 2015. Statistical downscaling of CMIP5 outputs for projecting future changes in rainfall in the Onkaparinga catchment. Science of the Total, Environment 530-531, 171–182. doi:10.1016/j.scitotenv.2015.05.024
  • Raudenbush, S.W. and Bryk, A.S., 2002. Hierarchical linear models applications and data analysis methods. 2nd. Thousand Oaks: Sage.
  • Raziei, T., Bordi, I., and Pereira, L., 2008. A precipitation-based regionalization for Western Iran and regional drought variability. Hydrology and Earth System Sciences, 12 (6), 1309–1321. doi:10.5194/hess-12-1309-2008.
  • Sachindra, D., et al., 2013. Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment streamflows. International Journal of Climatology, 33 (5), 1087–1106. doi:10.1002/joc.3493.
  • Sachindra, D., et al., 2014a. Statistical downscaling of general circulation model outputs to precipitation-part 2: bias-correction and future projections. International Journal of Climatology, 34 (11), 3282–3303. doi:10.1002/joc.3915.
  • Sachindra, D., et al., 2014b. Statistical downscaling of general circulation model outputs to precipitation-part 1: calibration and validation. International Journal of Climatology, 34 (11), 3264–3281. doi:10.1002/joc.3914.
  • Sachindra, D. and Perera, B., 2016. Annual statistical downscaling of precipitation and evaporation and monthly disaggregation. Theoretical and Applied Climatology, 131 (1–2), 181–200. doi:10.1007/s00704-016-1968-6.
  • Samadi, S., et al., 2012. Statistical downscaling of river runoff in a semi arid catchment. Water resource management, 27 (1), 117–136. doi:10.1007/s11269-012-0170-6.
  • Schmidli, J., et al., 2007. Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps. Journal of Geophysical Research, 112 (D4), D4. doi:10.1029/2005jd007026.
  • Semenov, M.A. and Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35 (4), 397–414. doi:10.1023/A:1005342632279.
  • Shadkam, S., et al., 2016. Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake. Journal of Great Lakes Research, 42 (5), 942–952. doi:10.1016/j.jglr.2016.07.033.
  • Shapiro, S.S. and Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52 (3–4), 591–611. doi:10.1093/biomet/52.3-4.591.
  • Sharif, M. and Burn, D.H., 2007. Improved K-nearest neighbor weather generating model. Journal of Hydrologic Engineering, 12 (1), 42–51. doi:10.1061/(asce)1084-0699(2007)12:1(42).
  • Sima, S. and Tajrishy, M., 2013. Using satellite data to extract volume–area–elevation relationships for Urmia Lake, Iran. Journal of Great Lakes Research, 39 (1), 90–99. doi:10.1016/j.jglr.2012.12.013.
  • Slaets, J., et al., 2014. A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. Journal of Hydrology, 513, 45–57. doi:10.1016/j.jhydrol.2014.03.034
  • Srivastav, R.K., Schardong, A., and Simonovic, S.P., 2014. Equidistance quantile matching method for updating IDFCurves under climate change. Water Resource Management, 28 (9), 2539–2562. doi:10.1007/s11269-014-0626-y.
  • Stern, R.D. and Coe, R., 1984. A model fitting analysis of daily rainfall data. Journal of the Royal Statistical Society. Series A (General), 147 (1), 1–34. doi:10.2307/2981736.
  • Tisseuil, C., et al., 2010. Statistical downscaling of river flows. Journal of Hydrology, 385 (1–4), 279–291. doi:10.1016/j.jhydrol.2010.02.030.
  • Tripathi, S., Srinivas, V., and Nanjundiah, R., 2006. Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330 (3–4), 621–640. doi:10.1016/j.jhydrol.2006.04.030.
  • Verdin, A., et al., 2015. Coupled stochastic weather generation using spatial and generalized linear models. Stochastic Environmental Research and Risk Assessment, 29 (2), 347–356. doi:10.1007/s00477-014-0911-6.
  • Verdin, A., et al., 2018. A conditional stochastic weather generator for seasonal to multi-decadal simulations. Journal of Hydrology, 556, 835–846. doi:10.1016/j.jhydrol.2015.12.036
  • Verdin, A., et al., 2019. BayGEN: A Bayesian space‐time stochastic weather generator. Water Resources Research, 55 (4), 2900–2915. doi:10.1029/2017wr022473.
  • Weigel, A.P., Liniger, M.A., and Appenzeller, C., 2008. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts?. Quarterly Journal of the Royal Meteorological Society, 134 (630), 241–260. doi:10.1002/qj.210.
  • Widmann, M., Bretherton, C., and Salathé, E., 2003. Statistical precipitation downscaling over the northwestern united states using numerically simulated precipitation as a predictor. Journal of Climate, 16 (5), 799–816. doi:10.1175/1520-0442(2003)016<0799:spdotn>2.0.co;2.
  • Wilby, R., Dawson, C., and Barrow, E., 2002. sdsm — a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17 (2), 145–157. doi:10.1016/s1364-8152(01)00060-3.
  • Wilby, R. and Harris, I., 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research, 42 (2), 2. doi:10.1029/2005wr004065.
  • Wilby, R.L., et al., 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA). https://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf
  • Wilks, D., 2011. Statistical Methods in the Atmospheric Sciences. Elsevier Academic Press, Amsterdam. doi:10.1016/c2010-0-65519-2
  • Wilks, D.S., 1998. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210 (1–4), 178–191. doi:10.1016/s0022-1694(98)00186-3.
  • Woolhiser, D.A., 1992. Modeling daily precipitation – progress and problems. In: A.T. Walden and P. Guttorp, eds. Statistics in the Environmental and Earth Sciences. New York: Wiley, 71–89.
  • Zarghami, M. and Szidarovszky, F., 2011. Multicriteria analysis: applications to water and environment management. Berlin: Springer. doi:10.1007/978-3-642-17937-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.