696
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A multi-model approach for analysing water balance and water-related ecosystem services in the Ouriyori catchment (Benin)

, , , , &
Pages 2453-2465 | Received 09 Sep 2019, Accepted 09 Jun 2020, Published online: 29 Sep 2020

References

  • Abbaspour, K.C., 2008. SWAT calibrating and uncertainty programs. A user manual. Zurich, Switzerland: Eawag, Swiss Federal Institute of Aquatic Science and Technology.
  • Abbaspour, K.C., 2011. SWAT-CUP4: SWAT calibration and uncertainty programs – A user manual. Zurich, Switzerland: Eawag, Swiss Federal Institute of Aquatic Science and Technology.
  • Abbaspour, K.C., Johnson, C., and Van Genuchten, M.T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3, 1340–1352. doi:10.2136/vzj2004.1340
  • Abbaspour, K.C., Vejdani, M., and Haghighat, S., 2007. SWAT-CUP calibration and uncertainty programs for SWAT. In: Proc. Intl. Congress on Modelling and Simulation (MODSIM’2007), Melbourne, Australia, 1603–1609.
  • Agnew, L.J., 2006. Identifying hydrologically sensitive areas: bridging the gap between science and application. Journal of Environmental Management, 78, 63–76. doi:10.1016/j.jenvman.2005.04.021.
  • Aich, V., et al., 2015. Climate or land use? Attribution of changes in river flooding in the Sahel Zone. Water, 7 (6), 2796–2820. doi:10.3390/w7062796
  • Alam, M.J., Meah, M.A., and Noor, M.S., 2011. Numerical modelling of groundwater flow and the effect of boundary condition for the hsieh aquifer. Asian Journal of Mathematics & Statistics, 4, 33–44. doi:10.3923/ajms.2011.33.44
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R., 1998. Large area hydrologic modeling and assessment–Part 1: Model development. Journal of the American Water Resources Association, 34, 73–89.
  • Arnold, J.G., et al., 1998. Large area hydrologic modelling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Ayele, G.T., 2017. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water, 9, 782. doi:10.3390/w9100782
  • Badou, D.F., 2016. Multi-model evaluation of blue and green water availability under climate change in Four-Non Sahelian Basins of the Niger River Basin. Thesis (PhD). University of Abomey-calavi.
  • Badou, D.F., et al., 2017. Evaluation of recent hydro-climatic changes in four tributaries of the Niger River Basin (West Africa). Hydrological Sciences Journal, 62 (5), 715–728. doi:10.1080/02626667.2016.1250898
  • Bansode, S. and Patil, K., 2016. Water balance assessment using Q-SWAT. Int J Eng Res, 5 (6), 2319–6890.
  • Bergström, S., 1976. Development and application of a conceptual runoff model for Scandinavian catchments. No. RH07. Norrköping: Meteorol. and Hydrol. Inst.
  • Bergström, S., 1992. The HBV model - its structure and applications, SMHI Hydrology, RH No.4, Norrkoping, 35.
  • Beven, K., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320 (1–2), 18–36. doi:10.1016/j.jhydrol.2005.07.007
  • Biazin, B., et al., 2012. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa–a review. Physics and Chemistry of the Earth, Parts A/B/C, 47, 139–151. doi:10.1016/j.pce.2011.08.015
  • Boorman, D.B., and Sefton, C.E.M., 1997. Recognising the uncertainty in the quantification of the effects of climate change on hydrological response. Climatic Change, 35(4), 415–434.
  • Bormann, H., 2005. Evaluation of hydrological models for scenario analyses: signal-to-noise-ratio between scenario effects and model uncertainty. Advances in Geosciences, 5, 43–48. doi:10.5194/adgeo-5-43-2005
  • Bossa, A.Y., 2012. Multi-scale modelling of sediment and nutrient flow dynamics in the Ouémé catchment (Benin) – towards an assessment of global change effects on soil degradation and water quality. Thesis (PhD). Rheinischen Friedrich-Wilhelms-Universität Bonn.
  • Bossa, A.Y. and Diekkrüger, B., 2012. Estimating scale effects of catchment properties on modelling soil and water degradation in Benin (West Africa). International Congress on Environmental Modelling and Software, 185. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/185
  • Bossa, A.Y., Diekkrüger, B., and Agbossou, E.K., 2014. Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water, 6 (10), 3152–3181. doi:10.3390/w6103152.
  • Breuer, L., et al., 2009. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM). I: model intercomparison with current land use. Advances in water resources, 32 (2), 129–146.
  • Chabi, A., 2016. Land-use change modelling, scenarios development and Impacts assessment on CO2 and N2O emissions from vegetation degradation in the Dassari basin, Benin. Thesis (PhD). Ghana: Kwame Nkrumah University of Science and Technology
  • Chaibou Begou, J., et al., 2016. Multi-site validation of the SWAT model on the Bani catchment: model performance and predictive uncertainty. Water, 8 (5), 178. doi:10.3390/w8050178
  • Chan, K.M., et al., 2006. Conservation planning for ecosystem services. PLoS Biology, 4, 11. doi:10.1371/journal.pbio.0040379
  • Cornelissen, T., Diekkrüger, B., and Giertz, S., 2013. A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. Journal of Hydrology, 498, 221–236. doi:10.1016/j.jhydrol.2013.06.016
  • Duan, Q., et al., 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30 (5), 1371–1386. doi:10.1016/j.advwatres.2006.11.014
  • Duku, C., et al., 2015. Towards ecosystem accounting: a comprehensive approach to modelling multiple hydrological ecosystem services. Hydrology & Earth System Sciences Discussions, 12, 3. doi:10.5194/hessd-12-3477-2015
  • FAO (Food and Agriculture Organization of the United Nations), 1978. Report on the AgroEcological zones project, vol. 1. Methodology and results for Africa. Rome: UNESCO, Paris and FAO.
  • FAO (Food and Agriculture Organization of the United Nations), 1983. Guidelines: land evaluation for rainfed agriculture. Food and Agriculture Organization of the United Nations. Soils Bulletin, 52. Rome: FAO.
  • Fasinmirin, J.T., Olufayo, A.A., and Oguntunde, P.G., 2012. Calibration and validation of a soil water simulation model (WaSiM) for field grown Amaranthus cruentus. International Journal of Plant Production, 2 (3), 269–278. doi:10.22069/IJPP.2012.618
  • Foley, A.M., 2010. Uncertainty in regional climate modelling: A review. Progress in Physical Geography: Earth and Environment, 34 (5), 647–670. doi:10.1177/0309133310375654
  • Forkour, G., 2014. Agricultural land use mapping in West Africa using multi-sensor satellite imagery. Thesis (PhD). Julius-Maximilians-Universität Würzburg, Germany. http://opus.uni-wuerzburg.de/files/10868/Thesis_Gerald_Forkuor_2014.pdf.
  • Forkuor, G., Landmann, T., Conrad, C. and Dech, S., 2012. Agricultural land use mapping in the sudanian savanna of West Africa: Current status and future possibilities. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 6293–6296). IEEE.
  • Giertz, S., et al., 2010. Hydrological processes and soil degradation in Benin. In: P. Speth, M. Christoph, and B. Diekkrüger, eds. Impacts of global change on the hydrological cycle in West and Northwest Africa. Germany: Springer, Berlin, 168–197.
  • Golmohammadi, G., et al., 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1 (1), 20–39. doi:10.3390/hydrology1010020
  • Gupta, H.V., Sorooshian, S., and Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4 (2), 135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
  • Haddeland, I., et al., 2011. Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 12 (5), 869–884. doi:10.1175/2011JHM1324.1
  • Hattermann, F.F., et al., 2018. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environmental Research Letters, 13, 015006. doi:10.1088/1748-9326/aa9938
  • Hiepe, C., 2008. Soil degradation by water erosion in a sub-humid West-African catchment: a modelling approach considering land use and climate change in Benin. Thesis (PhD). Germany: Rheinischen Friedrich-Wilhelms-Universität Bonn.
  • Hirekhan, M., Gupta, S.K., and Mishra, K.L., 2007. Application of WaSim to assess performance of a subsurface drainage system under semi-arid monsoon climate. Agricultural water management, 88(1–3), 224–234.
  • Hollinger, F. and Staatz, J.M., 2015. Agricultural Growth in West Africa. In: Market and policy drivers. Pobrano październik: FAO, African Development Bank, ECOWAS.
  • Huisman, J.A., Breuer, L., Bormann, H., Bronstert, A., Croke, B. F. W., Frede, H., Gräff, T., et al., 2009. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III : Scenario analysis. Advances in Water Resources, 32, 159–170. doi:10.1016/j.advwatres.2008.06.009
  • INSAE/RGPH 4, 2015. Quatrième Recensement Général de la Population et de l'Habitation (2013):  Que  retenir  des  effectifs  de population en 2013? INSAE, Cotonou, Bénin, 35 p
  • IWMI, 2007. Water for food, water for life: a Comprehensive Assessment of Water Management in Agriculture. International Water Management Institute. Earthscan, London, UK.
  • Jiang, T., Chen, D. Y, Xu, C., Chen, X., Chen, X., and Singh, V. P., 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology. 336, 316–333. doi:10.1016/j.jhydrol.2007.01.010
  • Jung, G., Wagner, S., and Kunstmann, H., 2012. Joint climate-hydrology modelling: an impact study for the data-sparse environment of the Volta Basin in West Africa. Hydrology Research, 43, 231–248. doi:10.2166/nh.2012.044
  • Kankam-Yeboah, K., et al., 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58 (4), 773–788. doi:10.1080/02626667.2013.782101
  • Kannan, N., et al., 2007. Hydrological modelling of a small catchment using SWAT-2000–Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology, 334 (1–2), 64–72. doi:10.1016/j.jhydrol.2006.09.030
  • Kasei, R.A., 2009. Modelling impacts of climate change on water resources in the Volta Basin, West Africa. Thesis (PhD). University of Bonn. http://hss.ulb.uni-bonn.de/2010/1977/1977.pdf.
  • Kebede, A., Diekkrüger, B., and Moges, S.A., 2013. Comparative study of a physically based distributed hydrological model versus a conceptual hydrological model for assessment of climate change response in the Upper Nile, Baro-Akobo basin: a case study of the Sore watershed, Ethiopia. International Journal of River Basin Management, 12 (4), 299–318. doi:10.1080/15715124.2014.917315
  • Kling, H., Fuchs, M., and Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264. doi:10.1016/j.jhydrol.2012.01.011
  • Le Maitre, D.C., et al., 2007. Linking ecosystem services and water resources: landscape‐scale hydrology of the Little Karoo. Frontiers in Ecology and the Environment, 5 (5), 261–270. doi:10.1890/1540-9295(2007)5[261:LESAWR]2.0.CO;2
  • Legesse, D., Abiye, T.A., Vallet-Coulomb, C., and Abate, H., 2010. Streamflow sensitivity to climate and land cover changes: Meki River, Ethiopia. Hydrology and Earth System Sciences, 14(11), 2277–2287.
  • Leh, M.D., et al., 2013. Quantifying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 165, 6–18. doi:10.1016/j.agee.2012.12.001.
  • Liersch, S., et al., 2019. Water resources planning in the Upper Niger River basin: are there gaps between water demand and supply? Journal of Hydrology: Regional Studies, 21, 176–194.
  • Liu, T., et al., 2013. Modeling the production of multiple ecosystem services from agricultural and forest landscapes in Rhode Island. Agricultural and Resource Economics Review, 42 (1), 251–274. doi:10.1017/S1068280500007711
  • Maes, J., et al., 2012. Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1 (1), 31–39. doi:10.1016/j.ecoser.2012.06.004
  • McCartney, M., Forkuor, G., Sood, A., Amisigo, B., Hattermann, F. and Muthuwatta, L., 2012. The water resource implications of changing climate in the Volta River Basin (Vol. 146). IWMI Research report. www.iwmi.org/publication/index.aspx
  • Me, W., Abell, J.M., and Hamilton, D.P., 2015. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrology and Earth System Sciences, 19(10).
  • MEA (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Well-being: Synthesis. Washington, DC.
  • Monteith, J.L., 1975. Principles of environmental physics. London, UK: Edward Arnold.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Narsimlu, B., et al., 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari river basin, India, using sequential uncertainty fitting. Environmental Processes, 2, 79–95. doi:10.1007/s40710-015-0064-8
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nasseri, M., et al., 2014. Monthly water balance modelling: probabilistic, possibilistic and hybrid methods for model combination and ensemble simulation. Journal of Hydrology, 511, 675–691. doi:10.1016/j.jhydrol.2014.01.065
  • Obuobie, E.L. and Diekkrüger, B., 2008. Using SWAT to evaluate climate change impact on water resources in the White Volta river basin, West Africa. Conference on International Research on Food Security, Natural Resource Management and Rural Development, Hohenheim, Germany.
  • EC, OECD (Organisation for Economic Co-operation and Development - European Commission - United Nations and World Bank). 2013. System of environmental-economic accounting 2012, experimental ecosystem accounting. [online]. https://www.oecd.org/env/system-of-environmental-economic-accounting-2012-9789210562850-en.htm
  • Osei, M.A., et al., 2018. Hydro-Climatic modelling of an ungauged Basin in Kumasi, Ghana. Hydrological Earth System Sciences, 1–19. doi:10.5194/hess-2017-729
  • Pert, P.L., et al., 2010. A catchment-based approach to mapping hydrological ecosystem services using riparian habitat: a case study from the wet tropics, Australia. Ecological Complexity, 7, 378–388. doi:10.1016/j.ecocom.2010.05.002
  • Schulla, J., 2014. Model description WaSiM. [online]. http://www.wasim.ch/downloads/doku/wasim/wasim_2013_en.pdf.
  • Schulla, J., 2015. Model description WaSiM, 332. Technical report. [online]. http://wasim.ch/downloads/doku/wasim/wasim_2015_en.pdf.
  • Schuol, J., et al., 2008. Modeling blue and green water availability in Africa. Water Resources Research, 44, 7. doi:10.1029/2007WR006609
  • SCS (Soil Conservation Service), 1972. National engineering handbook, Section 4. Washington, DC: Hydrology, Soil Conservation Service, US Department of Agriculture.
  • Shaxson, F. and Barber, R., 2003. Optimizing soil moisture for plant production: the significance of soil porosity. Rome, Italy: UN-FAO.
  • Sheate, W.R., et al., 2012. Spatial representation and specification of ecosystem services: a methodology using land use/landcover data and stakeholder engagement. Journal of Environmental Assessment Policy and Management, 14, 1–36. doi:10.1142/S1464333212500019
  • Sintondji, L., 2005. Modelling the rainfall-runoff process in the Upper Ouémé catchment (Térou in Benin Republic) in a context of global change: extrapolation from the local to the regional scale. Thesis (PhD). University of Bonn
  • Sintondji, L.O., et al., 2017. Modelling the hydrological balance of the Couffo basin at Lanta’s outlet in Benin: a tool for the sustainable use of water and land resources. International Research Journal of Environmental Sciences, 6 (11), 1–9.
  • Sintondji, O.L., Dossou Yovo, E., and Agbossou, E., 2013. Modelling the hydrological balance of the Okpara catchment at the Kaboua outlet in Benin. International Journal of AgriScience, 3 (3), 182–197.
  • Sudjarit, W., 2015. Application of SWAT model for assessing effect on main functions of watershed ecosystem in Headwater, Thailand. Proceedings of the International Academy of Ecology and Environmental Sciences, 5 (2), 57.
  • Sultan, B. and Gaetani, M., 2016. Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Frontiers in Plant Science, 7, 1262. doi:10.3389/fpls.2016.01262
  • Sunsnik, J., 2010. Literature review and comparative analysis of existing methodologies for water balance. European Commission Seventh Framework (EUFP7) Project.
  • Taghvaye Salimi, E., Nohegar, A., Malekian, A., Hosseini, M. and Holisaz, A., 2016. Runoff simulation using SWAT model and SUFI-2 algorithm (Case study: Shafaroud watershed, Guilan Province, Iran). Caspian Journal of Environmental Sciences, 14(1), 69–80.
  • Thapa, B.R., et al., 2017. A multi-model approach for analyzing water balance dynamics in Kathmandu Valley, Nepal. Journal of Hydrology: Regional Studies, 9, 149–162.
  • Tomšík, K., et al., 2015. Position of agriculture in Sub-Saharan GDP structure and economic performance. Agris On-line Papers in Economics and Informatics, 7 (665–2016–45047), 69–80. doi:10.7160/aol.2015.070108
  • UNDP, 2017. De l’eau pour tous au Benin. UNDP web. Available from: https://stories.undp.org/de-leau-pour-tous-au-benin [Accessed 2 October 2018].
  • van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturates Soils1. Soil Science Society of America Journal, 44, 892. doi:10.2136/sssaj1980.03615995004400050002x
  • Wagener, T., Wheater, H.S., and Gupta, H.V., 2004. Rainfall-runoff modelling in gauged and ungauged catchments. London: Imperial College Press.
  • Wallace, C.W., Flanagan, D.C., and Engel, B.A., 2018. Evaluating the effects of watershed size on SWAT calibration. Water, 10 (7), 898. doi:10.3390/w10070898
  • Wani, S.P., Rockstrom, J., Venkateswarlu, B. and Singh, A.K., 2011. New paradigm to unlock the potential of rainfed agriculture in the semi-arid tropics. World Soil Resources and Food Security, 9, 419–469.
  • Yan, B., et al., 2013. Impacts of land use change on watershed streamflow and sediment yield: an assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26–37. doi:10.1016/j.jhydrol.2013.01.008
  • Yira, Y., et al., 2016. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of Hydrology, 537, 187–199. doi:10.1016/j.jhydrol.2016.03.052.
  • Yira, Y., 2016. Modelling climate and land use change impacts on water resources in the Dano catchment (Burkina-Faso). Thesis (PhD). Rheinischen Friedrich-Wilhelms-Universität Bonn.
  • Zang, C.F., et al., 2012. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrology and Earth System Sciences, 16 (8), 2859–2870. doi:10.5194/hess-16-2859-2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.