657
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Assessing the origin and processes controlling groundwater salinization in coastal aquifers through integrated hydrochemical, isotopic and hydrogeochemical modelling techniques

, ORCID Icon & ORCID Icon
Pages 152-164 | Received 14 May 2019, Accepted 14 Jul 2020, Published online: 08 Dec 2020

References

  • Alcalá, F.J. and Custodio, E., 2008. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359 (1–2), 189–207. doi:10.1016/j.jhydrol.2008.06.028
  • Alfarrah, N., et al., 2017. Degradation of groundwater quality in coastal aquifer of Sabratah area, NW Libya. Environmental Earth Sciences, 76 (19). https://doi.org/10.1007/s12665-017-6999-5
  • Appelo, C.A.J. and Postma, D., 2005. Geochemistry, groundwater and pollution. 2nd ed. Leiden: A.A. Balkema Publishers.
  • Askri, B., et al., 2016. Isotopic and geochemical identifications of groundwater salinisation processes in Salalah coastal plain, Sultanate of Oman. Chemie der Erde - Geochemistry, 76 (2), 243–255. doi:10.1016/j.chemer.2015.12.002
  • Bagheri, R., Bagheri, F., and Eggenkamp, H.G.M., 2017. Origin of groundwater salinity in the Fasa plain, southern Iran, hydrogeochemical and isotopic approaches. Environmental Earth Sciences, 76 (19). doi:10.1007/s12665-017-6998-6
  • Bethke, C.M., 1996. Geochemical reaction modelling - Concepts and applications. New York: Oxford University Press.
  • Bouzourra, H., et al., 2015. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environmental Science and Pollution Research, 22 (4), 2643–2660. doi:10.1007/s11356-014-3428-0
  • Cary, L., et al., 2015. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach. Science of the Total Environment, 530–531, 411–429.
  • Charalambous, A.N. and Garratt, P., 2009. Recharge-abstraction relationships and sustainable yield in the Arani-Kortalaiyar groundwater basin, India. Quarterly Journal of Engineering Geology and Hydrogeology, 42 (1), 39–50. doi:10.1144/1470-9236/07-065
  • Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133 (3465), 1702–1703. doi:10.1126/science.133.3465.1702
  • Davis, S.N., Whittemore, D.O., and Fabryka-Martin, J., 1998. Uses of chloride/bromide ratios in studies of potable water. Ground Water, 36 (2), 338–350. doi:10.1111/j.1745-6584.1998.tb01099.x
  • Elango, L., 1992. Hydrogeochemistry and modeling of multilayer aquifers. (Ph.D.). Anna University.
  • Gemitzi, A., et al., 2014. Seawater intrusion into groundwater aquifer through a coastal lake - complex interaction characterised by water isotopes 2H and 18O. Isotopes in Environmental and Health Studies, 50 (1), 74–87. doi:10.1080/10256016.2013.823960
  • Gimenez-Forcada, E. and Roman, F.J.S.S., 2015. An excel macro to plot the HFE-diagram to identify sea water intrusion phases. Ground Water, 53 (5), 819–824. doi:10.1111/gwat.12280
  • Hem, J.D., 1992. Study and interpretation of the chemical characteristics of natural water, 3rd ed. US Geological Survey Water Supply Paper 2254. Alexandria, VA: U.S. Geological Survey.
  • Hwang, S., et al., 2004. Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea. Exploration Geophysics, 35 (1), 99–104. doi:10.1071/EG04099
  • Jones, B.F., Vengosh A., Rosenthal E., Yechieli Y. 1999. Geochemical Investigations. In: J. Bear, A.H.D. Cheng, S. Sorek, D. Ouazar, I. Herrera, eds. Seawater intrusion in coastal aquifers — concepts, methods and practices. Theory and applications of transport in porous media, vol. 14. Dordrecht: Springer. doi:10.1007/978-94-017-2969-7_3
  • Kazakis, N., et al., 2016. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment, 543 (Pt A), 373–387. doi:10.1016/j.scitotenv.2015.11.041
  • Kim, Y., et al., 2003. Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270 (3), 282–294. doi:10.1016/S0022-1694(02)00307-4
  • Krauskopf, K.B., 1979. Introduction to geochemistry. New York: McGraw-Hill.
  • Kumar, B., et al., 2010. Isotopic characteristics of Indian precipitation. Water Resources Research, 46 (12). doi:10.1029/2009WR008532
  • Lee, J.-Y., et al., 2008. Evaluation of seawater intrusion on the groundwater data obtained from the monitoring network in Korea. Water International, 33 (1), 127–146. doi:10.1080/02508060801927705
  • Mæller, D., 1990. The Na/CL ratio in rainwater and the seasalt chloride cycle. Tellus B: Chemical and Physical Meteorology, 42 (3), 254–262. doi:10.3402/tellusb.v42i3.15216
  • Maurya, P., Kumari, R., and Mukherjee, S., 2019. Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India. Journal of Geochemical Exploration, 196, 42–56. doi:10.1016/j.gexplo.2018.09.013
  • Nair, I.S., et al., 2015. Geochemical and isotopic signatures for the identification of seawater intrusion in an alluvial aquifer. Journal of Earth System Science, 124 (6), 1281–1291. doi:10.1007/s12040-015-0600-y
  • Nair, I.S., 2016. Assessment of seawater intrusion in an alluvial aquifer by hydrochemical - isotopic signatures and geochemical modelling. Thesis (Ph.D.). Department of Geology, Anna University, 173.
  • Nair, I.S., Brindha, K., and Elango, L., 2016. Identification of salinization by bromide and fluoride concentration in coastal aquifers near Chennai, southern India. Water Science, 30 (1), 41–50. doi:10.1016/j.wsj.2016.07.001
  • Nair, I.S., Renganayki, P.S., and Elango, L., 2013. Identification of seawater intrusion by Cl/Br ratio and mitigation through managed aquifer recharge in aquifers North of Chennai, India. Journal of Groundwater Research, 2 (1), 155–162.
  • Panno, S.V., et al., 2006. Characterization and identification of Na–Cl sources in ground water. Ground Water, 44 (2), 176–187. doi:10.1111/j.1745-6584.2005.00127.x
  • Parkhurst, D.L. and Appelo, C.A.J., 1999. User’s guide to PHREEQC-A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report. Denver, Colorado: U.S. Geological Survey.
  • Plummer, L.N., 1992. Geochemical modeling of water-rock interaction: past, present, future. Rotterdam, Brookfield: Balkema.
  • Rajaveni, S.P., Nair, I.S., and Elango, L., 2016a. Evaluation of impact of climate change on seawater intrusion in a coastal aquifer by finite element modelling. Journal of Climate Change, 2 (2), 111–118. doi:10.3233/JCC-160022
  • Rajaveni, S.P., Nair, I.S., and Elango, L., 2016b. Finite element modelling of a heavily exploited coastal aquifer to assess the response of groundwater level to the changes in pumping and rainfall variation due to climate change. Hydrology Research, 47 (1), 42–60.
  • Rao, S.V.N., et al., 2004. Planning groundwater development in coastal aquifers/Planification du développement de la ressource en eau souterraine des aquifères côtiers. Hydrological Sciences Journal, 49 (1), 155–170. doi:10.1623/hysj.49.1.155.53999
  • Reed, D., 2010. Understanding the effects of sea-level rise on coastal wetlands: the human dimension. EGU General Assembly 2010. Vienna, Austria, 5480.
  • Sathish, S., 2013. Geophysical, geochemical studies and groundwater modelling in south Chennai coastal aquifer. Thesis (Ph.D.). Anna University.
  • Schoeller, H., 1934. Les échanges de bases dans les eaux souterraines; trois exemples en Tunisie. Bulletin de la Société Géologique de France, 4, 389–420.
  • Schoeller, H., 1956. Geochimie des eaux souterraines. Paris: Revue de l’Instit. Francaise du Petrole, 230–244.
  • Stuyfzand, P.J., 1986. A new hydrochemical classification of water types: principles and application to the coastal dunes aquifer system of the Netherlands. In: ed. Proc. 9th Salt Water Intrusion Meeting, Delft, 641–655.
  • Stuyfzand, P.J., 2008. Base exchange indices as indicators of salinization or freshening of (coastal) aquifers. In: 20th Salt Water Intrusion Meeting, Florida, USA, 262–265.
  • UNDP, 1987. Hydrogeological and artificial recharge studies, Madras. New York: United Nations Department of Technical Co-operation for Development for the United Nations Development Program New York.
  • Vengosh, A. and Pankratov, I., 1998. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water, 36 (5), 815–824. doi:10.1111/j.1745-6584.1998.tb02200.x
  • Versluys, J., 1916. Chemische werkingen in den ondergrond der duinen. ed. Verslag Gewone Vergad. Amsterdam: Wis- & Nat. afd. Kon. Acad. Wetensch, XXIV, 1671–1676.
  • Versluys, J., 1931. Subterranean water conditions in the coastal regions of The Netherlands. Environmental Geology, 26, 65–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.