615
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Improving groundwater potential mapping using metaheuristic approaches

, , , &
Pages 2729-2749 | Received 21 May 2020, Accepted 20 Jul 2020, Published online: 17 Nov 2020

References

  • Adiat, K., Nawawi, M., and Abdullah, K., 2012. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–a case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440, 75–89. doi:10.1016/j.jhydrol.2012.03.028
  • Al-Abadi, A.M., Al-Temmeme, A.A., and Al-Ghanimy, M.A., 2016. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2 (3), 265–283. doi:10.1007/s40899-016-0056-5
  • Aniya, M., 1985. Landslide-susceptibility mapping in the Amahata river basin, Japan. Annals of the Association of American Geographers, 75 (1), 102–114.
  • Arkoprovo, B., Adarsa, J., and Prakash, S.S., 2012. Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: a case study from Ganjam district. Orissa, India. Research Journal of Recent Sciences, 1(9), 59–66.
  • Bandyopadhyay, S., et al., 2007. Harnessing earth observation (EO) capabilities in hydrogeology: an Indian perspective. Hydrogeology Journal, 15 (1), 155–158. doi:10.1007/s10040-006-0122-4
  • Banks, D., Robins, N., and Robins, N., 2002. An introduction to groundwater in crystalline bedrock. Trondheim: Geological survey of Norway. ISBN 82-7386-100-1.
  • Beckers, R., Deneubourg, J-L. and Gross S. 1992. Trails and U-turns in the selection of a path by the ant Lasius niger. Journal of Theoretical Biology, 159 (4), 397–415. doi:10.1016/S0022-5193(05)80686-1
  • Bednarik, M., et al., 2010. Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Physics and Chemistry of the Earth, Parts A/B/C, 35 (3–5), 162–171. doi:10.1016/j.pce.2009.12.002
  • Bui, D.T., et al., 2012. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199–211. doi:10.1016/j.cageo.2011.10.031
  • Bui, D.T., et al., 2017. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 14 (2), 447–458.
  • Chau, K., Wu, C., and Li, Y., 2005. Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering, 10 (6), 485–491. doi:10.1061/(ASCE)1084-0699(2005)10:6(485)
  • Chen, W., et al., 2019. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. Journal of Hydrology, 572, 435–448. doi:10.1016/j.jhydrol.2019.03.013
  • Chen, W., Panahi, M., and Pourghasemi, H.R., 2017. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157, 310–324. doi:10.1016/j.catena.2017.05.034
  • Chowdhury, A., et al., 2009. Integrated remote sensing and GIS‐based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30 (1), 231–250. doi:10.1080/01431160802270131
  • Clapcott, J., Goodwin, E., and Snelder, T., 2013. Predictive models of benthic macro-invertebrate metrics. Prepared for Ministry for the Environment. Cawthron Report No. 2301. 35 p. plus appendices.
  • Constantin, M., et al., 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences, 63 (2), 397–406. doi:10.1007/s12665-010-0724-y
  • Corsini, A., Cervi, F., and Ronchetti, F., 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines Italy). Geomorphology, 111 (1–2), 79–87. doi:10.1016/j.geomorph.2008.03.015
  • Dinesh Kumar, P., Gopinath, G., and Seralathan, P., 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28 (24), 5583–5601. doi:10.1080/01431160601086050
  • Dorigo, M., 1992. Optimization, learning and natural algorithms. (PhD. thesis). Italy Politecnico di Milano.
  • Dorigo, M. and Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical Computer Science, 344 (2–3), 243–278. doi:10.1016/j.tcs.2005.05.020
  • Dormann, C.F., et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 (1), 27–46. doi:10.1111/j.1600-0587.2012.07348.x
  • Freeze, R. and Cherry, J., 1979. Groundwater. Englewood Cliffs, NJ, USA: Prentice-Hall, 604.
  • Gogu, R., et al., 2001. GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9 (6), 555–569.
  • Huang, B., Liu, N., and Chandramouli, M., 2006. A GIS supported Ant algorithm for the linear feature covering problem with distance constraints. Decision Support Systems, 42 (2), 1063–1075. doi:10.1016/j.dss.2005.09.002
  • Jaafari, A., et al., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11 (4), 909–926. doi:10.1007/s13762-013-0464-0
  • Jaafari, A., Termeh, S.V.R., and Bui, D.T., 2019. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of Environmental Management, 243, 358–369. doi:10.1016/j.jenvman.2019.04.117
  • Jha, M.K., Chowdary, V., and Chowdhury, A., 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18 (7), 1713–1728. doi:10.1007/s10040-010-0631-z
  • Jha, M.K. and Peiffer, S., 2006. Applications of remote sensing and GIS technologies in groundwater hydrology: past, present and future. Bayreuth, Germany: BayCEER Bayreuth.
  • Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, Perth, WA, Australia: IEEE, 1942–1948.
  • Khosravi, K., et al., 2016a. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83 (2), 947–987.
  • Khosravi, K., et al., 2016b. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188 (12), 656. doi:10.1007/s10661-016-5665-9
  • Khosravi, K., Panahi, M., and Tien Bui, D., 2018. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology & Earth System Sciences, 22 (9), 4771–4792. doi:10.5194/hess-22-4771-2018
  • Kia, M.B., et al., 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67 (1), 251–264.
  • Koike, K., Nagano, S., and Kawaba, K., 1998. Construction and analysis of interpreted fracture plains through combination of satellite-image derived lineaments and digital elevation model data. Computers & Geosciences, 24 (6), 573–583. doi:10.1016/S0098-3004(98)00021-1
  • Lee, M.-J., Kang, J., and Jeon, S., 2012a. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: 2012 IEEE international geoscience and remote sensing symposium, Munich, Germany: IEEE.
  • Lee, S., et al., 2012b. Regional groundwater productivity potential map-ping using a geographic information system (GIS) based artificialneural network model. Hydrogeology Journal, 20 (8), 1511–27. doi:10.1007/s10040-012-0894-7
  • Lee, S., et al., 2012b. Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20 (8), 1511–1527. doi:10.1007/s10040-012-0894-7
  • Lee, S., Hong, S.-M., and Jung, H.-S., 2018. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto International, 33 (8), 847–861. doi:10.1080/10106049.2017.1303091
  • Mahapatra, S., et al., 2015. Induction motor control using PSO-ANFIS. Procedia Computer Science, 48, 754–769. doi:10.1016/j.procs.2015.04.212
  • Manap, M.A., 2013. Knowledge-and data-driven approach to GIS modelling technique for groundwater potential mapping at the upper Langat Basin, Malaysia. Universiti Putra Malaysia.
  • Mogaji, K., Lim, H., and Abdullah, K., 2015. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arabian Journal of Geosciences, 8 (5), 3235–3258.
  • Moghaddam, D.D., et al., 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8 (2), 913–929.
  • Moore, I. and Burch, G., 1986. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research, 22 (8), 1350–1360. doi:10.1029/WR022i008p01350
  • Moore, I.D., Grayson, R., and Ladson, A., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5 (1), 3–30. doi:10.1002/hyp.3360050103
  • Mukerji, A., Chatterjee, C., and Raghuwanshi, N.S., 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. Journal of Hydrologic Engineering., 14 (6), 647–652. doi:10.1061/(ASCE)HE.1943-5584.0000040
  • Naghibi, S.A. and Pourghasemi, H.R., 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management, 29 (14), 5217–5236. doi:10.1007/s11269-015-1114-8
  • Naghibi, S.A., Pourghasemi, H.R., and Dixon, B., 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188 (1), 44.
  • Oh, H.-J., et al., 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399 (3–4), 158–172. doi:10.1016/j.jhydrol.2010.12.027
  • Olden, J.D., Lawler, J.J., and Poff, N.L., 2008. Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology, 83 (2), 171–193. doi:10.1086/587826
  • Ozdemir, A., 2011. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411 (3–4), 290–308. doi:10.1016/j.jhydrol.2011.10.010
  • Park, I., Kim, Y., and Lee, S., 2014. Groundwater productivity potential mapping using evidential belief function. Groundwater, 52 (S1), 201–207. doi:10.1111/gwat.12197
  • Park, S., Hamm, S.-Y., Jeon, H-T. and Kim S. 2017. Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability, 9 (7), 1157. doi:10.3390/su9071157
  • Pham, B.T., et al., 2017. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52–63. doi:10.1016/j.catena.2016.09.007
  • Polykretis, C., Ferentinou, M., and Chalkias, C., 2015. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bulletin of Engineering Geology and the Environment, 74 (1), 27–45. doi:10.1007/s10064-014-0607-7
  • Pourtaghi, Z.S. and Pourghasemi, H.R., 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22 (3), 643–662.
  • Pradhan, B., 2009. Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Open Geosciences, 1 (1), 120–129. doi:10.2478/v10085-009-0008-5
  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. doi:10.1016/j.cageo.2012.08.023
  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models inlandslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–65. doi:10.1016/j.cageo.2012.08.023
  • Pradhan, B. and Buchroithner, M.F., 2010. Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmental & Engineering Geoscience, 16 (2), 107–126. doi:10.2113/gseegeosci.16.2.107
  • Prasad, R., et al., 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55 (3), 467–475. doi:10.1007/s00254-007-0992-3
  • Rahmati, O., et al., 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8 (9), 7059–7071. doi:10.1007/s12517-014-1668-4
  • Rahmati, O., Pourghasemi, H.R., and Melesse, A.M., 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137, 360–372. doi:10.1016/j.catena.2015.10.010
  • Razandi, Y., et al., 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8 (4), 867–883. doi:10.1007/s12145-015-0220-8
  • Razavi-Termeh, S.V., et al., 2020a. Based forest fire susceptibility mapping using artificial intelligence methods. Remote Sensing, 12 (10), 1689. Jan. doi:10.3390/rs12101689
  • Razavi-Termeh, S.V., Sadeghi-Niaraki, A., and Choi, S.-M., 2019. Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water, 11 (8), 1596. doi:10.3390/w11081596
  • Razavi-Termeh, S.V., Sadeghi-Niaraki, A., and Choi, S.-M., 2020b. Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11 (1), 821–845. doi:10.1080/19475705.2020.1753824
  • Shahid, S., Nath, S., and Roy, J., 2000. Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing, 21 (9), 1919–1924. doi:10.1080/014311600209823
  • Shi, Y. and Eberhart, R.C. 1999. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), Washington D.C, USA: IEEE, 1945–1950.
  • Singh, A.K. and Prakash, S.R. 2002. An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed, Mirjapur district, UP, India, Asian conference on GIS, GPS, aerial photography and remote sensing, Bangkok-Thailand.
  • Storn, R. and Price, K. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341–59. doi:10.1023/A:1008202821328
  • Süzen, M.L. and Doyuran, V., 2004. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology, 45 (5), 665–679. doi:10.1007/s00254-003-0917-8
  • Termeh, S.V.R., et al., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. doi:10.1016/j.scitotenv.2017.09.262
  • Termeh, S.V.R., et al., 2019. Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeology Journal, 27 (7), 2511–2534. doi:10.1007/s10040-019-02017-9
  • Varadarajan, M. and Swarup, K.S. 2008. Solving multi-objective optimal power flow using differential evolution. IET Generation, Transmission & Distribution, 2(5), 720–30. doi:10.1049/iet-gtd:20070457
  • Vijith, H., 2007. Groundwater potential in the hard rock terrain of Western Ghats: a case study from Kottayam district, Kerala using Resourcesat (IRS-P6) data and GIS techniques. Journal of the Indian Society of Remote Sensing, 35 (2), 163. doi:10.1007/BF02990780
  • Wang, Y.-M. and Elhag, T.M., 2008. An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Systems with Applications, 12 (10), 3099–3106. doi:10.1016/j.eswa.2007.06.026
  • Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Washington, DC: Department of Agriculture, Science and Education Administration, 537.
  • Zabihi, M., et al., 2016. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environmental Earth Sciences, 75 (8), 665. doi:10.1007/s12665-016-5424-9
  • Zheng, Q., et al. 2014. Differential particle swarm evolution for robot control tuning. In: 2014 American control conference. Portland, OR, USA: IEEE, 5276–5281.
  • Zhu, C. and Wang, X. 2009. Landslide susceptibility mapping: A comparison of information and weights-of-evidence methods in Three Gorges Area. In: 2009 international conference on environmental science and information application technology. Wuhan, China: IEEE, 342–346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.