303
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Behaviour of Cr in runoff from two catchments underlain by felsic bedrock

, , , , , , , , , , , ORCID Icon & show all
Pages 2765-2782 | Received 04 May 2020, Accepted 03 Aug 2020, Published online: 18 Nov 2020

References

  • Andronikov, A.V., et al., 2019. One river, two streams: chemical and Cr isotopic features of the Neglinka River (Karelia, northwest Russia). Hydrological Sciences Journal, 64 (8), 974–982. doi:10.1080/02626667.2019.1617418
  • Basu, A. and Johnson, T.M., 2012. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Environmental Science & Technology, 46 (10), 5353–5360. doi:10.1021/es204086y
  • Bonnand, P., et al., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382, 10–20. doi:10.1016/j.epsl.2013.09.001
  • Borodulina, G.S., 2006. Groundwater quality. In: N.N. Filatov and T.I. Regerand, ed. Water resources of Republic of Karelia and their use for drinking water supply. Petrozavodsk: Karelian Science Center, Russian Academy of Science, 127–144. (in Russian).
  • Borodulina, G.S., 2013. Groundwaters. In: A.V. Litvinenko and T.I. Regerand, eds. Water objects of the city of Petrozavodsk. Petrozavodsk: Karelian Science Center, Russian Academy of Science, 31–42. (in Russian).
  • Buerge, I.J. and Hug, S.J., 1997. Kinetics and pH dependence of chromium (VI) reduction by iron(II). Environmental Science & Technology, 32 (14), 2092–2099. doi:10.1021/es970932b
  • Bullen, T.D., 2014. Metal stable isotopes in weathering and hydrology. Treatise in Geochemistry, 7, 329–359. Second Edition.
  • Cadkova, E. and Chrastny, V., 2015. Isotope evidence of hexavalent chromium stability in ground water samples. Chemosphere, 138, 74–80.
  • Chrastny, V., et al., 2011. Method of chromium (Cr) separation and establishing of measurement of its isotopic composition with the multicollector mass-spectrometer MC ICP MS. Czech Geological Sutvey open file report #TACR 010210055, 19. (in Czech).
  • D’Arcy, J., et al., 2016. Processes controlling the chromium isotopic composition of river water: constrains from basaltic river catchments. Geochimica et Cosmochimica Acta, 186, 296–315. doi:10.1016/j.gca.2016.04.027
  • Døsing, L.N., et al., 2011. Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to the natural environment. Chemical Geology, 285 (1–4), 157–166. doi:10.1016/j.chemgeo.2011.04.005
  • Economou-Eliopoulos, M., Frei, R., and Atsarou, C., 2014. Application of chromium stable isotopes to the evaluation of Cr (VI) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece). Catena, 122, 216–228. doi:10.1016/j.catena.2014.06.013
  • Ellis, A.S., Johnson, T.M., and Bullen, T.D., 2002. Cr isotopes and the fate of hexavalent chromium in the environment. Science, 295 (5562), 2060–2062. doi:10.1126/science.1068368
  • Farkas, J., et al., 2013. Chromium isotope variations (δ53Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53Cr in the Earth´s mantle over geologic time. Geochimica et Cosmochimica Acta, 123, 74–92. doi:10.1016/j.gca.2013.08.016
  • Fendorf, S., Wielinga, B.W., and Hansel, C.M., 2000. Chromium transformation in natural environments: the role of biological and abiological processes in chromium (VI) reduction. International Geology Review, 42 (8), 691–701. doi:10.1080/00206810009465107
  • Fendorf, S.E., 1995. Surface reactions of chromium in soils and waters. Geoderma, 67 (1–2), 55–71. doi:10.1016/0016-7061(94)00062-F
  • Fendorf, S.E. and Li, G., 1996. Kinetics of chromate reduction by ferrous iron. Environmental Science & Technology, 30 (5), 1614–1617. doi:10.1021/es950618m
  • Fendorf, S.E. and Zasoski, R.J., 1992. Chromium (III) oxidation by delta MnO2. 1. Characterization. Environmental Science & Technology, 26 (1), 79–85. doi:10.1021/es00025a006
  • Frei, R., Poire´, D., and Frei, K.M., 2014. Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NM Argentina): a chromium stable isotope perspective. Chemical Geology, 381, 110–124. doi:10.1016/j.chemgeo.2014.05.015
  • Frei, R. and Polat, A., 2013. Chromium isotope fractionation during oxidation weathering – implications from the study of a palaeoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Research, 224, 434–453. doi:10.1016/j.precamres.2012 October 008
  • Goring-Hartford, H.J., 2017. Chromium isotope behavior in natural waters. Unpublished Ph.D thesis. University of Southampton, 187.
  • Guildford, J.P., 1956. Fundamental statistics in psychology and education. New York, NY USA: McGrow-Hill, 565.
  • Hayes, H.R., et al., 2020. Controls on granitic weathering fronts in contrasting climates. Chemical Geology, 535 (119450), 1–19. doi:10.1016/j.chemgeo.2019.119450
  • Hruska, J. and Kram, P., 2003. Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Science, 7, 525–539. doi:10.5194/hess-7-525-2003
  • Izbicki, J.A., et al., 2008. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Applied Geochemistry, 23 (5), 1325–1352. doi:10.1016/j.apgeochem2007.11.015
  • Izbicki, J.A., et al., 2012. δ53Cr isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Applied Geochemistry, 27 (4), 541–853. doi:10.1016/j.apgeochem.2011.12.019
  • Izbicki, J.A., et al., 2015. Cr (VI) occurrence and geochemistry in water from public-supply wells in California. Applied Geochemistry, 63, 203–217. doi:10.1016/j.apgeochem.2015.08.007
  • James, B.R. and Bartlett, R.J., 1983. Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. Journal of Environmental Quality, 12 (2), 173–176. doi:10.2134/jeq1983.00472425001200020004x
  • Johnson, T.M., 2011. Stable isotopes of Cr and Se as tracers of redox processes in earth surface environments. In: M. Baskaran, ed. Handbook of environmental isotope geochemistry. Berlin: Springer-Verlag, 155–175.
  • Kopacek, J., et al., 2016. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Resources, 103, 30–37.
  • Kram, P., 2019. Water balance and hydrologic patterns of the Lysina catchment, Slavkov Forest, 1990–2018. Geoscience Research Reports, 52, 45–52. (in Czech with English abstract)
  • Kram, P., et al., 2017. Hydrochemical fluxes and bedrock chemistry in three contrasting catchments underlain by felsic, mafic and ultramafic rocks. Procedia Earth and Planetary Science, 17, 538–541. doi:10.1016/j.proeps.2016.12.136
  • Kram, P., Hruska, J., and Shanley, J.B., 2012. Streamwater chemistry in three contrasting monolithologic Czech catchments. Applied Geochemistry, 27 (9), 1854–1863. doi:10.1016/j.apgeochem.2012.02.020
  • Kram, P., et al., 2009. Geoecology of a forest watershed underlain by serpentine in central Europe. Northeastern Naturalist, 16 (sp5), 309–328. doi:10.1656/045.016.0523
  • Kura, N.U., et al., 2013. Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. International Journal of Environmental Research and Public Health, 10 (5), 1861–1881. doi:10.3390/ijerph10051861
  • Li, C.-F., et al., 2017. A low-blank two-column chromatography separation strategy based on a KMnO4 oxidizing reagent for Cr isotope determination in micro-silicate samples by thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry, 32 (10), 1938–1945. doi:10.1039/C7JA00225D
  • McClain, C.N. and Maher, K., 2016. Chromium fluxes and speciation in ultramafic catchments and global rivers. Chemical Geology, 426, 135–157. doi:10.1016/j.chemgeo.2016.01.021
  • Mikhailov, V.A., Lodygin, A.N., and Kushnerenko, V.K., 2014. Features of geological structure and metal content of Shuja-Petrozavodsk area (Republic of Karelia). Regional Geology and Metallogeny, 59, 61–69. (in Russian)
  • Ndung´u, K., et al., 2010. Chromium oxidation by manganese (hydr)oxides in a Califorina aquifer. Applied Geochemistry, 25 (3), 377–381. doi:10.1016/j.apgeochem.2009.12.004
  • Novak, M., et al., 2014. Common occurrence of a positive δ53 Cr shift in central European waters contaminated by geogenic/industrial chromium relative to source values. Environmental Science & Technology, 48 (11), 6089–6096. doi:10.1021/es405615h
  • Novak, M., et al., 2017a. The fate of Cr (VI) in contaminated aquifers 65 years after the first spillage of plating solutions: A δ53Cr study at four central European sites. Catena, 158, 371–380. doi:10.1016/j.catena.2017.07.004
  • Novak, M., et al., 2017b. Chromium isotope fractionations resulting from electroplating, chromating and anodizing: implication for groundwater pollution studies. Applied Geochemistry, 80, 134–142. doi:10.1016/j.apgeochem.2017.03.009
  • Novak, M., et al., 2017c. Temporal changes in Cr fluxes and δ53Cr values in runoff from a small serpentinite catchment (Slavkov Forest, Czech Republic). Chemical Geology, 472, 22–30. doi:10.1016/j.chemgeo.2017.09.023
  • Novikov, S.G., 2014. Ecologic estimate of pollution by heavy metals of soils in urban territories according to categories of land management (on the example of the city of Petrozavodsk). A PhD thesis. Petrozavodsk State University, Petrozavodsk, 228. (in Russian).
  • Oze, C., Bird, D.K., and Fendorf, S., 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Science, 104 (16), 6544–6549. doi:10.1073/pnas.0701085104
  • Paulukat, C., et al., 2015. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact: a Cr isotope perspective on the Sukinda valley ore district (Orissa, India). Applied Geochemistry, 59, 125–138. doi:10.1016/j.apgeochem.2015.04.016
  • Puzon, G.J., et al., 2008. Mobility and recalcitrance of organo-chromium (III) complexes. Chemosphere, 70 (11), 2054–2059. doi:10.1016/j.chemosphere.2007.09.010
  • Qin, L. and Wang, X., 2017. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82 (1), 379–414. doi:10.2138/rmg.2017.82.10
  • Richard, F.C. and Bourg, A.C.M., 1991. Aqueous geochemistry of chromium: a review. Water Resources, 25, 807–816.
  • Schauble, E., Rossman, G.R., and Taylor, H.P., 2004. Theoretical estimates of equilibrium chromium isotope fractionations. Chemical Geology, 205 (1–2), 99–114. doi:10.1016/j.chemgeo.2003.12.015
  • Schiavon, N., 2007. Kaolinisation of granite in an urban environment. Environmental Geology, 52 (2), 399–407. doi:10.1007/s00254-006-0473-0
  • Slukovsky, Z.I. and Bubnova, T.P. 2013. Fraction <0.1 mm chemical composition of Neglinka River sediments – contamination indicator of urban stream. Scientific Records of Petrozavodsk State University 4, 50–56 (in Russian with English Summary).
  • The State Water Cadaster of the USSR. 1986. Perennial data on regime and resources of surface waters from the landmass. V. 1. RSFSR. Issue 5. Basins of rivers of the Baltic Sea, and Lakes Ladoga and Onega (Gosudarstvenny vodny cadaster. Mnogoletnie dannye o rezhime i resursakh poverkhnostnykh vod sushi. RSFSR. Basseiny rek Baltiiskogo morja, Onezhskogo i Ladozhskogo ozer). Leningrad: Hydrometeoizdat, 100. (in Russian).
  • Water objects of the city of Petrozavodsk, 2013. A.V. Litvinenko and T.I. Regerand, eds. Petrozavodsk: Karelian Scientific Center RAS, 109.
  • Wielinga, B., et al., 2001. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology, 35 (3), 522–527. doi:10.1021/es001457b
  • Wu, W., et al., 2017. Chromium isotope systematics in the Connecticut River. Chemical Geology, 456, 98–111. doi:10.1016/j.chemgeo.2017.03.009
  • Yu, L., et al., 2018. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area. Hydrology and Earth System Sciences, 22 (1), 487–508. doi:10.5194/hess-22-487-2018
  • Zhu, J.-M., et al., 2018. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33 (5), 809–821. doi:10.1039/C8JA00033F
  • Zink, S., Schoenberg, R., and Staubwasser, M., 2010. Isotopic fractionation and reaction kinetics between Cr (III) and Cr (VI) in aqueous media. Geochimica et Cosmochimica Acta, 74 (20), 5729–5745. doi:10.1016/j.gca.2010.07.015
  • Zobkov, M.B. and Zobkova, M.V., 2015. A device for determination of organic carbon in water with photochemical persulfate oxidation in the system of continuous gas flow and FTIR spectrometric detection. Factory Laboratory. Diagnostics of Materials, 81, 10–15. (in Russian)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.