9,571
Views
32
CrossRef citations to date
0
Altmetric
Special Issue: Hydrological data: opportunities and barriers

Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2534-2551 | Received 11 May 2020, Accepted 13 Oct 2020, Published online: 10 Jun 2021

References

  • Abbott, B.W., et al., 2019. Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 12 (7), 533–540. doi:10.1038/s41561-019-0374-y
  • Addor, N., et al., 2020. Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrological Sciences Journal, 65 (5), 712–725. doi:10.1080/02626667.2019.1683182
  • Afshari, S., et al., 2018. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. Journal of Hydrology, 556, 539–556. doi:10.1016/j.jhydrol.2017.11.036
  • Ajzen, I., 1991. The theory of planned behavior. Organizational behavior and human decision processes. Journal of Psychology & Health, 26 (9), 1113–1127. doi:10.1016/0749-5978(91)90020-T
  • Albano, R., Sole, A., and Adamowski, J., 2015. READY: A web-based geographical information system for enhanced flood resilience through raising awareness in citizens. Natural Hazards and Earth System Sciences, 15 (7), 1645–1658. doi:10.5194/nhess-15-1645-2015
  • Albuquerque, J.P., et al., 2015. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 29 (4), 667–689. doi:10.1080/13658816.2014.996567
  • Ames, D.P., et al., 2012. HydroDesktop: web services-based software for hydrologic data discovery, download, visualization, and analysis. Environmental Modelling and Software, 37, 146–156. doi:10.1016/j.envsoft.2012.03.013
  • Anbalagan, B. and Valliyammai, C., 2017. #ChennaiFloods: leveraging human and machine learning for crisis mapping during disasters using social media. In: Proceedings - 23rd IEEE International Conference on High Performance Computing Workshops, HiPCW 2016, 19 December 2016 to 22 December 2016, Hyderabad, India.
  • Anhalt-Depies, C., et al., 2019. Tradeoffs and tools for data quality, privacy, transparency, and trust in citizen science. Biological Conservation, 238, 108195. doi:10.1016/j.biocon.2019.108195
  • Annis, A. and Nardi, F., 2019. Integrating VGI and 2D hydraulic models into a data assimilation framework for real time flood forecasting and mapping. Geo-spatial Information Science, 22 (4), 223–236. doi:10.1080/10095020.2019.1626135
  • Antelio, M., et al., 2012. Qualitocracy: A data quality collaborative framework applied to citizen science. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 931–936. doi:10.1109/ICSMC.2012.6377847
  • Aretano, R., et al., 2013. People perception of landscape change effects on ecosystem services in small Mediterranean islands: A combination of subjective and objective assessments. Landscape and Urban Planning, 112 (1), 63–73. doi:10.1016/j.landurbplan.2012.12.010
  • Arthur, R., et al., 2018. Social sensing of floods in the UK. PLoS One, 13 (1). doi:10.1371/journal.pone.0189327
  • Assumpcao, T.H., et al., 2019. Citizens’ campaigns for environmental water monitoring: lessons from field experiments. IEEE Access, 7, 134601–134620. doi:10.1109/ACCESS.2019.2939471
  • Assumpção, T.H., et al., 2018. Citizen observations contributing to flood modelling: opportunities and challenges. Hydrology and Earth System Sciences, 22 (2), 1473–1489. doi:10.5194/hess-22-1473-2018
  • Aubert, A.H., Bauer, R., and Lienert, J., 2018. A review of water-related serious games to specify use in environmental multi-criteria decision analysis. Environmental Modelling and Software, 105, 64–78. doi:10.1016/J.ENVSOFT.2018.03.023
  • Aubert, A.H., Medema, W., and Wals, A.E.J., 2019. Towards a framework for designing and assessing game-based approaches for sustainable water governance. Water, 11 (4), 869. doi:10.3390/w11040869
  • Aulov, O., Price, A., and Halem, M., 2014. AsonMaps: a platform for aggregation, visualization and analysis of disaster related human sensor network observations. In: Proceedings of the 11th International Conference on Information Systems for Crisis Response and Management, May 2014, University Park, PA, 802–806.
  • Baccarella, C.V., et al., 2018. Social media? It’s serious! Understanding the dark side of social media. European Management Journal, 36 (4), 431–438. doi:10.1016/j.emj.2018.07.002
  • Banwart, S.A., et al., 2013. Sustaining earth ’s critical zone basic science and interdisciplinary solutions for global challenges. Sheffield: University of Sheffield, 48.
  • Beigi, G., et al., 2016. An overview of sentiment analysis in social media and its applications in disaster relief. Studies in Computational Intelligence, 639, 313–340. doi:10.1007/978-3-319-30319-2_13
  • Bernstein, J.H., 2011. The data-information-knowledge-wisdom hierarchy and its antithesis. NASKO. doi:10.7152/nasko.v2i1.12806
  • Beven, K., et al., 2020. Developing observational methods to drive future hydrological science: can we make a start as a community? Hydrological Processes, 34 (3), 868–873. doi:10.1002/hyp.13622
  • Blöschl, G., et al., 2013. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Runoff predict. Ungauged basins synth. Across process. Places scales. Cambridge: Cambridge University Press.
  • Blöschl, G., et al., 2019. Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal, 64 (10), 1141–1158. doi:10.1080/02626667.2019.1620507
  • Bonney, R., et al., 2009. Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience, 59 (11), 977–984. doi:10.1525/bio.2009.59.11.9
  • Brabham, D.C., et al., 2014. Crowdsourcing applications for public health. American Journal of Preventive Medicine, 46 (2), 179–187. doi:10.1016/j.amepre.2013.10.016
  • Braccini, A.M., Sæbø, Ø., and Federici, T., 2019. From the blogosphere into the parliament: the role of digital technologies in organizing social movements. Information and Organization, 29 (3), 100250. doi:10.1016/j.infoandorg.2019.04.002
  • Braccini, A.M., Za, S., and Sæbø, Ø., 2018. A collaborative discourse or only a collection of voices? An exploratory study of the use of social media in the e-Participation domain. Research Papers, 177. https://aisel.aisnet.org/ecis2018_
  • Brantley, S.L., et al., 2016. Designing a suite of measurements to understand the critical zone. Earth Surface Dynamics, 4 (1), 211–235. doi:10.5194/esurf-4-211-2016
  • Breuer, L., et al., 2015. HydroCrowd: a citizen science snapshot to assess the spatial control of nitrogen solutes in surface waters. Scientific Reports, 5 (1), 16503. doi:10.1038/srep16503
  • Brondizio, E.S., et al., 2016. Re-conceptualizing the anthropocene: A call for collaboration. Global Environmental Change, 39, 318–327. doi:10.1016/j.gloenvcha.2016.02.006
  • Buarque, S., et al., 2020. Using historical source data to understand urban flood risk: a socio-hydrological modelling application at Gregório Creek, Brazil. Hydrological Sciences Journal, 65 (7), 1075–1083. doi:10.1080/02626667.2020.1740705
  • Bubeck, P., et al., 2017. Explaining differences in flood management approaches in Europe and in the USA – a comparative analysis. Journal of Flood Risk Management, 10 (4), 436–445. doi:10.1111/jfr3.12151
  • Buchecker, M., Menzel, S., and Home, R., 2013. How much does participatory flood management contribute to stakeholders’ social capacity building? Empirical findings based on a triangulation of three evaluation approaches. Natural Hazards & Earth System Sciences, 13 (6). doi:10.5194/nhess-13-1427-2013
  • Bui, E.N., 2016. Data-driven critical zone science: a new paradigm. Science of the Total Environment, 568, 587–593. doi:10.1016/j.scitotenv.2016.01.202
  • Burgess, H.K., et al., 2017. The science of citizen science: exploring barriers to use as a primary research tool. Biological Conservation, 208, 113–120. doi:10.1016/J.BIOCON.2016.05.014
  • Burns, T.W., O’Connor, D.J., and Stocklmayer, S.M., 2003. Science communication: a contemporary definition. Public Understanding of Science. doi:10.1177/09636625030122004
  • Buytaert, W., et al., 2014. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science, 2 (26), 1–21. doi:10.3389/feart.2014.00026
  • Buytaert, W., et al., 2016. Citizen science for water resources management: toward polycentric monitoring and governance? Journal of Water Resources Planning and Management, 142 (4), 01816002. doi:10.1061/(ASCE)WR.1943-5452.0000641
  • Carmona-Moreno, C., Dondeynaz, C., and Biedler, M., 2018. Position paper on Water, Energy, Food and Ecosystems (WEFE) nexus and Sustainable Development Goals (SDGs). doi:10.2760/5295
  • Ceola, S., et al., 2016. Adaptation of water resources systems to changing society and environment: a statement by the international association of hydrological sciences. Hydrological Sciences Journal, 61 (16), 2803–2817. doi:10.1080/02626667.2016.1230674
  • Chase, S.K. and Levine, A., 2016. A framework for evaluating and designing citizen science programs for natural resources monitoring. Conservation Biology, 30 (3), 456–466. doi:10.1111/cobi.12697
  • Chawla, L. and Cushing, D.F., 2007. Education for strategic environmental behavior. Environmental Education Research, 13 (4), 437–452. doi:10.1080/13504620701581539
  • Connor, R., et al., 2020. Chapter 9 – water-climate-energy-food-environment nexus. The United Nations World Water Development Report 2020 ‘Water and Climate Change’, 118–125. https://en.unesco.org/themes/water-security/wwap/wwdr/2020
  • Conrad, C.C. and Hilchey, K.G., 2011. A review of citizen science and community-based environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment, 176, 273–291. doi:10.1007/s10661-010-1582-5
  • Craglia, M., Ostermann, F., and Spinsanti, L., 2012. Digital earth from vision to practice: making sense of citizen-generated content. International Journal of Digital Earth, 5 (5), 398–416. doi:10.1080/17538947.2012.712273
  • Crochemore, L., et al., 2020. Lessons learnt from checking the quality of openly accessible river flow data worldwide. Hydrological Sciences Journal, 65 (5), 699–711. doi:10.1080/02626667.2019.1659509
  • Cudennec, C., et al., 2018. Epistemological dimensions of the water–energy–food nexus approach: reply to discussions of “challenges in operationalizing the water–energy–food nexus.” Hydrological Sciences Journal, 63 (12), 1868–1871. doi:10.1080/02626667.2018.1545097
  • Cudennec, C., et al., 2016. Hydrometeorology and hydroclimate. Advances in Meteorology, 1487890, 4. doi:10.1155/2016/1487890
  • Cudennec, C., et al., 2020. Towards FAIR and SQUARE hydrological data. Hydrological Sciences Journal, 65 (5), 681–682. doi:10.1080/02626667.2020.1739397
  • Cunha, D.G.F., et al., 2017. Citizen science participation in research in the environmental sciences: key factors related to projects’ success and longevity. Anais Da Academia Brasileira De Ciências, 89 (3), 2229–2245. doi:10.1590/0001-3765201720160548
  • D’Odorico, P., et al., 2018. The global food-energy-water nexus. Reviews of Geophysics, 56, 456–531. doi:10.1029/2017RG000591
  • Dallery, D., et al., 2020. An end user friendly hydrological web service for hydrograph prediction in ungauged basins. Hydrological Sciences Journal, (in press). https://doi.org/10.1080/02626667.2020.1797045
  • Davids, J.C., et al., 2019. Citizen science flow – an assessment of simple streamflow measurement methods. Hydrology and Earth System Sciences, 23 (2), 1045–1065. doi:10.5194/hess-23-1045-2019
  • Davids, J.C., van de Giesen, N., and Rutten, M., 2017. Continuity vs. the crowd—tradeoffs between continuous and intermittent citizen hydrology streamflow observations. Environmental Management, 60 (1), 12–29. doi:10.1007/s00267-017-0872-x
  • de Bruijn, J.A., et al., 2019. A global database of historic and real-time flood events based on social media. Scientific Data, 6 (1), 311. doi:10.1038/s41597-019-0326-9
  • Dellarocas, C., 2006. Strategic manipulation of internet opinion forums: implications for consumers and firms. Management Science, 52 (10), 1577–1593. doi:10.1287/mnsc.1060.0567
  • Demeritt, D., et al., 2013. The European flood alert system and the communication, perception, and use of ensemble predictions for operational flood risk management. Hydrological Processes, 27 (1), 147–157. doi:10.1002/hyp.9419
  • Demir, I. and Krajewski, W.F., 2013. Towards an integrated flood information system: centralized data access, analysis, and visualization. Environmental Modelling and Software, 50, 77–84. doi:10.1016/J.ENVSOFT.2013.08.009
  • Den Haan, R.-J. and Van der Voort, M.C., 2018. On evaluating social learning outcomes of serious games to collaboratively address sustainability problems: a literature review. Sustainability, 10 (12), 4529. doi:10.3390/SU10124529
  • Di Baldassarre, G., et al., 2013a. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrology and Earth System Sciences, 17 (8), 3235–3244. doi:10.5194/hess-17-3235-2013
  • Di Baldassarre, G., et al., 2013b. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17 (8), 3295. doi:10.5194/hess-17-3295-2013
  • Di Baldassarre, G., et al., 2019. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resources Research, 55 (8), 6327–6355. doi:10.1029/2018WR023901
  • Di Baldassarre, G., Brandimarte, L., and Beven, K., 2016. The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrological Sciences Journal, 61 (9), 1748–1758. doi:10.1080/02626667.2015.1091460
  • Dixon, H., et al., 2020. Intergovernmental cooperation for hydrometry – what, why, how? Hydrological Sciences Journal, (in press). doi:10.1080/02626667.2020.1764569
  • Eilander, D., et al., 2016. Harvesting social media for generation of near real-time flood maps. Procedia Engineering, 154, 176–183. doi:10.1016/j.proeng.2016.07.441
  • Eitzel, M.V., et al., 2017. Citizen science terminology matters: exploring key terms. Citizen Science: Theory and Practice, 2 (1). doi:10.5334/cstp.96
  • Elliott, K.C. and Rosenberg, J., 2019. Philosophical foundations for citizen science. Citizen Science: Theory and Practice, 4 (1). doi:10.5334/cstp.155
  • Ernst, C., Mladenow, A., and Strauss, C., 2017. Collaboration and crowdsourcing in emergency management. International Journal of Pervasive Computing and Communications, 13 (2), 176–193. doi:10.1108/IJPCC-03-2017-0026
  • Estellés-Arolas, E. and González-Ladrón-De-Guevara, F., 2012. Towards an integrated crowdsourcing definition. Journal of Information Science, 38 (2), 189–200. doi:10.1177/0165551512437638
  • Etter, S., et al., 2018. Value of uncertain streamflow observations for hydrological modelling. Hydrology and Earth System Sciences, 22 (10), 5243–5257. doi:10.5194/hess-22-5243-2018
  • Faraj, S., Jarvenpaa, S.S.L., and Majchrzak, A., 2011. Knowledge collaboration in online communities. Organization Science, 22 (5), 1224–1239. doi:10.1287/orsc.1100.0614
  • Federal Crowdsourcing and Citizen Science Catalog, 2020. https://www.citizenscience.gov/catalog [ Accessed 5 August 2020].
  • Federici, T., Braccini, A.M., and Sæbø, Ø., 2015. ‘Gentlemen, all aboard!’ ICT and party politics: reflections from a mass-eParticipation experience. Government Information Quarterly, 32 (3), 287–298. doi:10.1016/j.giq.2015.04.009
  • Fohringer, J., et al., 2015. Social media as an information source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 15 (12), 2725–2738. doi:10.5194/nhess-15-2725-2015
  • Follett, R. and Strezov, V., 2015. An analysis of citizen science based research: usage and publication patterns. PLoS One, 10 (11), e0143687. doi:10.1371/journal.pone.0143687
  • Fritz, S., et al., 2019. Citizen science and the United Nations sustainable development goals. Nature Sustainability, 2 (10), 922–930. doi:10.1038/s41893-019-0390-3
  • Fritz, S., Fonte, C.C., and See, L., 2017. The role of citizen science in earth observation. Remote Sensing, 9 (4), 1–13. doi:10.3390/rs9040357
  • Gandomi, A. and Haider, M., 2015. Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35 (2), 137–144. doi:10.1016/j.ijinfomgt.2014.10.007
  • Geiger, D. and Schader, M., 2014. Personalized task recommendation in crowdsourcing information systems - current state of the art. Decision Support Systems, 65, 3–16. doi:10.1016/j.dss.2014.05.007
  • Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69 (4), 211–221. doi:10.1007/s10708-007-9111-y
  • Goodchild, M.F., et al., 2012. Next-generation digital earth. Proceedings of the National Academy of Sciences, 109 (28), 11088–11094. doi:10.1073/PNAS.1202383109
  • Gorelick, N., et al., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. doi:10.1016/j.rse.2017.06.031
  • Gura, T., 2013. Citizen science: amateur experts. Nature, 496 (7444), 259–261. doi:10.1038/nj7444-259a
  • Guswa, A.J., et al., 2020. Advancing ecohydrology in the 21st century: a convergence of opportunities. Ecohydrology, e2208. doi:10.1002/eco.2208
  • Haklay, M., 2013. Citizen science and volunteered geographic information – overview and typology of participation. In: D.Z. Sui, S. Elwood, and M.F. Goodchild, eds. Crowdsourcing geographic knowledge: Volunteered Geographic Information (VGI) in theory and practice. Berlin: Springer, 105–122. doi:10.1007/978-94-007-4587-2_7
  • Hayward, B., 2012. Children, citizenship and environment: nurturing a democratic imagination in a changing world. London, UK: Routledge. doi:10.4324/9780203106839
  • Haywood, B.K. and Besley, J.C., 2014. Education, outreach, and inclusive engagement: towards integrated indicators of successful program outcomes in participatory science. Public Understanding of Science, 23 (1), 92–106. doi:10.1177/0963662513494560
  • Hewitt, C., Mason, S., and Walland, D., 2012. The global framework for climate services. Nature Climate Change, 2 (12), 831–832. doi:10.1038/nclimate1745
  • Howe, J., 2006. The rise of crowdsourcing. Wired Magazine, 14 (6), 1–4. doi:10.1086/599595
  • Hrachowitz, M., et al., 2013. A decade of Predictions in Ungauged Basins (PUB)-a review. Hydrological Sciences Journal, 58 (6), 1198–1255. doi:10.1080/02626667.2013.803183
  • Huang, Q. and Xiao, Y., 2015. Geographic situational awareness: mining tweets for disaster preparedness, emergency response, impact, and recovery. ISPRS International Journal of Geo-Information, 4 (3), 1549–1568. doi:10.3390/ijgi4031549
  • Hutter, K., et al., 2011. Communitition: the tension between competition and collaboration in community-based design contests. Creativity and Innovation Management, 20 (1), 3–21. doi:10.1111/j.1467-8691.2011.00589.x
  • IMoMo, 2018. Non-traditional data collection. https://www.imomohub.com/ [ Accessed 23 April 2020].
  • Jeschke, S., et al., 2018. Water surface wavelets. ACM Transactions on Graphics, 37 (4), 1–13. doi:10.1145/3197517.3201336
  • Jiang, S., et al., 2019. Advancing opportunistic sensing in hydrology: a novel approach to measuring rainfall with ordinary surveillance cameras. Water Resources Research, 55 (4), 3004–3027. doi:10.1029/2018WR024480
  • Joint Research Centre, 2020. An inventory of citizen science activities for environmental policies. https://data.europa.eu/euodp/en/data/dataset/jrc-citsci-10004 [ Accessed 5 August 2020].
  • Jollymore, A., et al., 2017. Citizen science for water quality monitoring: data implications of citizen perspectives. Journal of Environmental Management, 200, 456–467. doi:10.1016/j.jenvman.2017.05.083
  • Kahila-Tani, M., et al., 2016. Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Planning Practice & Research, 31 (2), 195–214. doi:10.1080/02697459.2015.1104203
  • Kallis, G. and Butler, D., 2001. The EU water framework directive: measures and implications. Water Policy, 3 (2), 125–142. doi:10.1016/S1366-7017(01)00007-1
  • Kamar, E., Hacker, S., and Horvitz, E., 2012. Combining human and machine intelligence in large-scale crowdsourcing. Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems AAMAS, 12, 467–474.
  • Kieslinger, B., et al., 2018. The challenge of evaluation: an open framework for evaluating citizen science activities. SocArXiv. doi:10.31235/OSF.IO/ENZC9
  • Kleinhans, R., Van Ham, M., and Evans-Cowley, J., 2015. Using social media and mobile technologies to foster engagement and self-organization in participatory urban planning and neighbourhood governance. Planning, Practice & Research, 30 (3), 237–247. doi:10.1080/02697459.2015.1051320
  • Kosmala, M., et al., 2016. Assessing data quality in citizen science. Frontiers in Ecology and the Environment, 14 (10), 551–560. doi:10.1002/fee.1436
  • Kullenberg, C. and Kasperowski, D., 2016. What is citizen science? – A scientometric meta-analysis. PLoS One, 11 (1), e0147152. doi:10.1371/journal.pone.0147152
  • Le Boursicaud, R., et al., 2016. Gauging extreme floods on YouTube: application of LSPIV to home movies for the post-event determination of stream discharges. Hydrological Processes, 30 (1), 90–105. doi:10.1002/hyp.10532
  • Le Coz, J., et al., 2016. Crowdsourced data for flood hydrology: feedback from recent citizen science projects in Argentina, France and New Zealand. Journal of Hydrology, 541, 766–777. doi:10.1016/j.jhydrol.2016.07.036
  • Lee, C., Scherngell, T., and Barber, M.J., 2011. Investigating an online social network using spatial interaction models. Social Networks, 33 (2), 129–133. doi:10.1016/j.socnet.2010.11.002
  • Leidner, D.E., Kock, H., and Gonzalez, E., 2010. Assimilating generation Y IT new hires into USAA’s workforce: the role of an enterprise 2.0 system. MIS Quarterly Executive, 9 (4), 229–242.
  • Li, Z., et al., 2018. A novel approach to leveraging social media for rapid flood mapping: a case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 45 (2), 97–110. doi:10.1080/15230406.2016.1271356
  • Liberatore, A., et al., 2018. Social media as a platform for a citizen science community of practice. Citizen Science: Theory and Practice, 3 (1), 1–14. doi:10.5334/cstp.108
  • Lisjak, J., Schade, S., and Kotsev, A., 2017. Closing data gaps with citizen science? Findings from the Danube Region. ISPRS International Journal of Geo-Information, 6 (9), 277. doi:10.3390/ijgi6090277
  • Liu, J., et al., 2017. Challenges in operationalizing the water–energy–food nexus. Hydrological Sciences Journal, 62 (11), 1714–1720. doi:10.1080/02626667.2017.1353695
  • Liu, X., Vedlitz, A., and Shi, L., 2014. Examining the determinants of public environmental concern: evidence from national public surveys. Environmental Science & Policy, 39, 77–94. doi:10.1016/j.envsci.2014.02.006
  • Loiselle, S.A., et al., 2016. Micro and macroscale drivers of nutrient concentrations in urban streams in South, Central and North America. PLoS One, 11 (9), e0162684. doi:10.1371/journal.pone.0162684
  • Ma, M. and Agarwal, R., 2007. Through a glass darkly: information technology design, identity verification, and knowledge contribution in online communities. Information Systems Research, 18 (1), 42–67. doi:10.1287/isre.1070.0113
  • Maguire, D.J., et al., 2005. GIS, spatial analysis, and modeling. USA: Esri Press, 480.
  • Majchrzak, A., Wagner, C., and Yates, D., 2013. The impact of shaping on knowledge reuse for organizational improvement with wikis. MIS Quaterly, 37 (2), 455–469.
  • Malczewski, J., 2006. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20 (7), 703–726. doi:10.1080/13658810600661508
  • Manfreda, S., et al., 2018. On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10 (4), 641. doi:10.3390/rs10040641
  • Mao, F., et al., 2019. Low-cost environmental sensor networks: recent advances and future directions. Frontiers in Earth Science, 7, 221. doi:10.3389/FEART.2019.00221
  • Mård, J., Di Baldassarre, G., and Mazzoleni, M., 2018. Nighttime light data reveal how flood protection shapes human proximity to rivers. Science Advances, 4 (8), 1–8. doi:10.1126/sciadv.aar5779
  • Mazzoleni, M., et al., 2017. Can assimilation of crowdsourced data in hydrological modelling improve flood prediction? Hydrology and Earth System Sciences, 21 (2), 839–861. doi:10.5194/hess-21-839-2017
  • Mazzoleni, M., et al., 2018. Towards assimilation of crowdsourced observations for different levels of citizen engagement: the flood event of 2013 in the Bacchiglione catchment. Hydrology and Earth System Sciences, 1–40. doi:10.5194/hess-2017-59
  • Mazzoleni, M., Amaranto, A., and Solomatine, D.P., 2019. Integrating qualitative flow observations in a lumped hydrologic routing model. Water Resources Research, 55 (7). doi:10.1029/2018wr023768
  • McCabe, M.F., et al., 2017. The future of Earth observation in hydrology. Hydrology and Earth System Sciences, 21 (7), 3879–3914. doi:10.5194/hess-21-3879-2017
  • McLure Wasko, M. and Faraj, S., 2005. Why should i share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quaterly, 29 (1), 35–57. doi:10.2307/25148667
  • McMillan, H., et al., 2016. Panta Rhei 2013-2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 61 (7), 1174–1191. doi:10.1080/02626667.2016.1159308
  • Melville, T., Baker, O., and Dolly, D., 2012. Spatial knowledge interchange environment: leveraging Web 2.0 technologies to breach the knowledge divide in agricultural development. In: GEOCROWD ‘12: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information. doi:10.1145/2442952.2442966
  • Michelsen, N., et al., 2016. YouTube as a crowd-generated water level archive. Science of the Total Environment, 568, 189–195. doi:10.1016/J.SCITOTENV.2016.05.211
  • Montanari, A., et al., 2013. “Panta Rhei—everything flows”: change in hydrology and society—the IAHS scientific decade 2013–2022. Hydrological Sciences Journal, 58 (8), 1256–1275. doi:10.1080/02626667.2013.809088
  • Montargil, F. and Santos, V., 2017. Citizen observatories: concept, opportunities and communication with citizens in the first EU experiences. In: A.A. Paulin, L.G. Anthopoulos, and C.G. Reddick, eds. Beyond bureaucracy: towards sustainable governance informatisation. Cham, Switzerland: Springer International Publishing, 167–184. ISBN: 978-3-319-54142-6.
  • Morschheuser, B., Hamari, J., and Koivisto, J., 2016. Gamification in crowdsourcing: a review. In: Proceedings of the 49th Annual Hawaii International Conference on System Sciences (HICSS), 5-8 January. Hawaii, USA, 4375–4384 doi:10.1109/HICSS.2016.543
  • Mukhtarov, F., Dieperink, C., and Driessen, P., 2018. The influence of information and communication technologies on public participation in urban water governance: A review of place-based research. Environmental Science & Policy, 89, 430–438. doi:10.1016/j.envsci.2018.08.015
  • Naik, N., 2016. Flooded streets-A crowdsourced sensing system for disaster response: a case study. In: 2016 IEEE International Symposium on Systems Engineering (ISSE), 1–3. doi:10.1109/SysEng.2016.7753186
  • Newman, G., et al., 2012. The future of citizen science: emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment, 10 (6), 298–304. doi:10.1890/110294
  • Njue, N., et al., 2019. Citizen science in hydrological monitoring and ecosystem services management: state of the art and future prospects. Science of the Total Environment, 693, 133531. doi:10.1016/j.scitotenv.2019.07.337
  • O’Brien, K., Selboe, E., and Hayward, B.M., 2018. Exploring youth activism on climate change: dutiful, disruptive, and dangerous dissent. Ecology and Society, 23 (3). doi:10.5751/ES-10287-230342
  • O’Grady, M.J., et al., 2016. Intelligent sensing for citizen science. Mobile Networks and Applications, 21 (2), 375–385. doi:10.1007/s11036-016-0682-z
  • Oliveira, N., Jun, E., and Reinecke, K., 2017. Citizen science opportunities in volunteer-based online experiments. In: Proceedings of the 2017 CHI conference on human factors in computing systems, 6800–6812. doi:10.1145/3025453.3025473
  • Palsson, G., et al., 2013. Reconceptualizing the ‘anthropos’ in the anthropocene: integrating the social sciences and humanities in global environmental change research. Environmental Science & Policy, 28, 3–13. doi:10.1016/J.ENVSCI.2012.11.004
  • Pande, S. and Sivapalan, M., 2017. Progress in socio-hydrology: a meta-analysis of challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 4 (4), e1193. doi:10.1002/wat2.1193
  • Pandey, N. and Natarajan, S., 2016. How social media can contribute during disaster events? Case study of Chennai floods 2015. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1352–1356). doi:10.1109/ICACCI.2016.7732236
  • Pandya, R. and Dibner, K.A., 2019. Learning through citizen science: enhancing opportunities by design. National Academies Press. doi:10.17226/25183
  • Paul, J.D., et al., 2018. Citizen science for hydrological risk reduction and resilience building. Wiley Interdisciplinary Reviews: Water, 5 (1), e1262. doi:10.1002/wat2.1262
  • Paul, J.D., Hannah, D.M., and Liu, W., 2019. Editorial: citizen science: reducing risk and building resilience to natural hazards. Frontiers in Earth Science, 7, 320. doi:10.3389/feart.2019.00320
  • Pecora, S. and Lins, H.F., 2020. E-monitoring the nature of water. Hydrological Sciences Journal, 65 (5), 683–698. doi:10.1080/02626667.2020.1724296
  • Poser, K. and Dransch, D., 2010. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica, 64 (1), 89–98. doi:10.5623/geomat-2010-0008
  • Preece, J., 2000. Online communities: designing usability and supporting sociability. New York, NY. John Wiley and Sons, Inc.
  • Puri, S.K. and Sahay, S., 2003. Participation through communicative action: A case study of GIS for addressing land/water development in India. Information Technology for Development, 10 (3), 179–199. doi:10.1002/itdj.1590100305
  • Quinn, P., 2018. Is the GDPR and its right to data portability a major enabler of citizen science? Global Jurist, 18 (2). doi:10.1515/GJ-2018-0021
  • Radchuk, O., Kerbe, W., and Schmidt, M., 2017. Homo politicus meets homo ludens: public participation in serious life science games. Public Understanding of Science, 26 (5), 531–546. doi:10.1177/0963662516653030
  • Resch, B., et al., 2015. Crowdsourcing physiological conditions and subjective emotions by coupling technical and human mobile sensors. GI_Forum, 1, 514–524. doi:10.1553/giscience2015s514
  • Restrepo-Estrada, C., et al., 2018. Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring. Computers & Geosciences, 111, 148–158. doi:10.1016/j.cageo.2017.10.010
  • Rosa, A.L., Chiarelli, D.D., and Rulli, M.C., 2020. Global agricultural economic water scarcity. Science Advances, 6 (18), eaaz6031. doi:10.1126/sciadv.aaz6031
  • Rutten, M., Minkman, E., and van der Sanden, M., 2017. How to get and keep citizens involved in mobile crowd sensing for water management? A review of key success factors and motivational aspects. Wiley Interdisciplinary Reviews: Water, 4 (4), e1218. doi:10.1002/wat2.1218
  • Schwabish, J.A., 2020. Elevate the debate: a multilayered approach to communicating your research. Hoboken, NJ: John Wiley & Sons., Ed.
  • See, L., et al., 2016. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5 (5). doi:10.3390/ijgi5050055
  • See, L., 2019. A review of citizen science and crowdsourcing in applications of pluvial flooding. Frontiers in Earth Science, 7, 44. doi:10.3389/feart.2019.00044
  • Seibert, J., et al., 2019. Virtual staff gauges for crowd-based stream level observations. Frontiers in Earth Science, 7, 70. doi:10.3389/feart.2019.00070
  • Seibert, J. and Vis, M.J.P., 2016. How informative are stream level observations in different geographic regions? Hydrological Processes, 30 (14), 2498–2508. doi:10.1002/hyp.10887
  • Sermet, Y., et al., 2019. Crowdsourced approaches for stage measurements at ungauged locations using smartphones. Hydrological Sciences Journal, 65 (5), 813–822. doi:10.1080/02626667.2019.1659508
  • Sheth, A., 2009. Citizen sensing, social signals, and enriching human experience. IEEE Internet Computing, 13 (4), 87–92. doi:10.1109/MIC.2009.77
  • Shukla, A., et al., 2019. Evolution of hydroinformatics at a state water management agency. Hydrological Sciences Journal, 65 (5), 735–748. doi:10.1080/02626667.2019.1661418
  • Silberbauer, M., 2019. Internet-based applications for interrogating 50 years of data from the South African national water quality monitoring network. Hydrological Sciences Journal, 65 (5), 726–734. doi:10.1080/02626667.2019.1645334
  • Singh, V.P. and Fiorentino, M., 1996. Geographical information systems in hydrology. Hydrology and Water Resources of Africa. doi:10.1007/0-306-48065-4
  • Sit, M.A., Koylu, C., and Demir, I., 2019. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma. International Journal of Digital Earth, 12 (11), 1205–1229. doi:10.1080/17538947.2018.1563219
  • Sivapalan, M., 2005. Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. Encyclopedia of Hydrological Sciences. doi:10.1002/0470848944.hsa012
  • Smith, A., et al., 2019. New estimates of flood exposure in developing countries using high-resolution population data. Nature Communication, 10 (1), 1–7. doi:10.1038/s41467-019-09282-y
  • Smith, L., et al., 2017. Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. Journal of Flood Risk Management, 10 (3), 370–380. doi:10.1111/jfr3.12154
  • Stahl, B.C., et al., 2017. The responsible research and innovation (RRI) maturity model: linking theory and practice. Sustainability, 9 (6), 1–19. doi:10.3390/su9061036
  • Starkey, E., et al., 2017. Demonstrating the value of community-based (‘citizen science’) observations for catchment modelling and characterisation. Journal of Hydrology, 548, 801–817. doi:10.1016/J.JHYDROL.2017.03.019
  • Stefanidis, A., Crooks, A., and Radzikowski, J., 2013. Harvesting ambient geospatial information from social media feeds. GeoJournal, 78 (2), 319–338. doi:10.1007/s10708-011-9438-2
  • Stork, D.G., 2001. An architecture supporting the collection and monitoring of data openly contributed over the World Wide Web. Proceedings Tenth IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. WET ICE 2001, 380–385. doi:10.1109/ENABL.2001.953448
  • Strickland, B.R., 2011. The Gale Encyclopedia of psychology. Simply Psychology, Second Edition. doi:10.4324/9780203720448
  • Strobl, B., et al., 2019a. Citizen scientist training through an online game for data quality control. Geoscience Communication, 3 (1), 109–126. doi:10.5194/gc-3-109-2020
  • Strobl, B., et al., 2019b. Accuracy of crowdsourced streamflow and stream level class estimates. Hydrological Sciences Journal, 65 (5), 823–841. doi:10.1080/02626667.2019.1578966
  • Swain, N.R., et al., 2015. A review of open source software solutions for developing water resources web applications. Environmental Modelling and Software, 67, 108–117. doi:10.1016/J.ENVSOFT.2015.01.014
  • Sy, B., et al., 2019. Flood hazard assessment and the role of citizen science. Journal of Flood Risk Management, 12 (S2), 1–14. doi:10.1111/jfr3.12519
  • Tauro, F., et al., 2018. Measurements and observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 63 (2), 169–196. doi:10.1080/02626667.2017.1420191
  • Tkachenko, N., Jarvis, S., and Procter, R., 2017. Predicting floods with flickr tags. PLoS One, 12 (2), e0172870. doi:10.1371/journal.pone.0172870
  • Tomsett, C. and Leyland, J., 2019. Remote sensing of river corridors: A review of current trends and future directions. River and Research Applications, 35 (7), 779–803. doi:10.1002/rra.3479
  • Tress, G., Tress, B., and Fry, G., 2005. Clarifying integrative research concepts in landscape ecology. Landscape Ecology, 20 (4), 479–493. doi:10.1007/s10980-004-3290-4
  • Trouille, L., Lintott, C.J., and Fortson, L.F., 2019. Citizen science frontiers: efficiency, engagement, and serendipitous discovery with human-machine systems. Proceedings of the National Academy of Sciences, 116 (6), 1902–1909. doi:10.1073/pnas.1807190116
  • Tserstou, A., et al., 2017. SCENT: citizen sourced data in support of environmental monitoring. In: 2017 21st International Conference on Control Systems and Computer Science (CSCS), 612–616). doi:10.1109/CSCS.2017.93
  • Uprety, M., et al., 2019. Improving water resources management using participatory monitoring in a remote mountainous region of Nepal. Journal of Hydrology: Regional Studies, 23, 100604. doi:10.1016/j.ejrh.2019.100604
  • Vicari, R., et al., 2019. Climate risks, digital media, and big data: following communication trails to investigate urban communities’ resilience. Natural Hazards and Earth System Sciences, 19 (7), 1485–1498. doi:10.5194/nhess-19-1485-2019
  • Vitolo, C., et al., 2015. Web technologies for environmental big data. Environmental Modelling and Software, 63, 185–198. doi:10.1016/j.envsoft.2014.10.007
  • Von Korff, Y., et al., 2012. Implementing participatory water management: recent advances in theory, practice, and evaluation. Ecology and Society, 17 (1). doi:10.5751/ES-04733-170130
  • von Krogh, G., et al., 2012. Carrots and rainbows: motivation and social practice in open source software development. MIS Quarterly, 36 (2), 649–676. doi:10.2307/41703471
  • Wan, Z., et al., 2014. A cloud-based global flood disaster community cyber-infrastructure: development and demonstration. Environmental Modelling and Software. 58, 86–94. Elsevier. doi:10.1016/J.ENVSOFT.2014.04.007
  • Wang, R.Q., et al., 2018. Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data. Computers & Geosciences, 111, 139–147. doi:10.1016/j.cageo.2017.11.008
  • Weber, K., Pallas, F., and Ulbricht, M.-R., 2019. Challenges of citizen science: commons, incentives, organizations, and regulations. The American Journal of Bioethics, 19 (8), 52–54. doi:10.1080/15265161.2019.1619862
  • Wehn, U., et al., 2015. Citizen observatories as facilitators of change in water governance? Environmental Engineering and Management Journal, 14 (9), 2083–2086.
  • White, T., et al., 2015. The role of critical zone observatories in critical zone science. Developments in Earth Surface Processes, 19, 15–78. doi:10.1016/B978-0-444-63369-9.00002-1
  • Whiteaker, T.L., et al., 2006. Integrating arc hydro features with a schematic network. Transactions in GIS, 10 (2), 219–237. doi:10.1111/j.1467-9671.2006.00254.x
  • Wiggins, A. and Crowston, K., 2011. From conservation to crowdsourcing: A typology of citizen science. In: 44th Hawaii international conference on system sciences, 1–10. doi:10.1109/HICSS.2011.207
  • Witherow, M.A., et al., 2018. Analysis of crowdsourced images for flooding detection. European Congress on Computational Methods in Applied Sciences and Engineering, 27, 140–149. doi:10.1007/978-3-319-68195-5_15
  • World Bank Group, 2018. Assessment of the state of hydrological services in developing countries. Washington, DC: World Bank, 1–55.
  • Wu, P., Christidis, N., and Stott, P., 2013. Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change, 3 (9), 807–810. doi:10.1038/nclimate1932
  • Xiao, Y., Huang, Q., and Wu, K., 2015. Understanding social media data for disaster management. Natural Hazards, 79 (3), 1663–1679. doi:10.1007/s11069-015-1918-0
  • Yadav, M. and Rahman, Z., 2016. The social role of social media: the case of Chennai rains-2015. Social Network Analysis and Mining, 6 (1), 1–12. doi:10.1007/s13278-016-0410-5
  • Yang, P. and Ng, T.L., 2017. Gauging through the crowd: a crowd-sourcing approach to urban rainfall measurement and storm water modeling implications. Water Resources Research, 53 (11), 9462–9478. doi:10.1002/2017WR020682
  • Young, G., et al., 2015. Hydrological sciences and water security: an overview. IAHS-AISH Proceedings of the International Association of Hydrological Sciences, 366, 1–9. doi:10.5194/piahs-366-1-2015
  • Yu, Y., et al., 2017. Urban infrastructure safety system based on mobile crowdsensing. International Journal of Disaster Risk Reduction, 27, 427–438. doi:10.1016/j.ijdrr.2017.11.004
  • Zadick, J., Kenwright, B., and Mitchell, K., 2016. Integrating real-time fluid simulation with a voxel engine. The Computer Games Journal, 5 (1–2), 55–64. doi:10.1007/s40869-016-0020-5
  • Zheng, F., et al., 2018. Crowdsourcing methods for data collection in geophysics: state of the art, issues, and future directions. Reviews of Geophysics, 56 (4), 698–740. doi:10.1029/2018RG000616