1,432
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Trends in flow intermittence for European rivers

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon, , , , , , , , , , & show all
Pages 37-49 | Received 14 May 2020, Accepted 28 Sep 2020, Published online: 08 Dec 2020

References

  • Beaufort, A., Carreau, J., and Sauquet, E., 2019. A classification approach to reconstruct local daily drying dynamics at headwater streams. Hydrological Processes, 33 (13), 1896–1912. doi:10.1002/hyp.13445.
  • Beguería, S., et al., 2014. Standardized precipitation evapotranspiration index SPEI revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34 (10), 3001–3023. doi:10.1002/joc.3887.
  • Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.
  • Bormann, H. and Pinter, N., 2017. Trends in low flows of German rivers since 1950: comparability of different low‐flow indicators and their spatial patterns. River Research and Applications, 33 (7), 1191–1204. doi:10.1002/rra.3152.
  • Burn, D.H., 1997. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology, 202 (1–4), 212–230. doi:10.1016/S0022-1694(97)00068-1.
  • Coch, A. and Mediero, L., 2016. Trends in low flows in Spain in the period 1949–2009. Hydrological Sciences Journal, 61 (3), 568–584. doi:10.1080/02626667.2015.1081202.
  • Costigan, K., et al., 2017. Chapter 2.2 – flow regimes in intermittent rivers and ephemeral streams. In: T. Datry, N. Bonada, and A.J. Boulton, eds.. Intermittent rivers and ephemeral streams. Ecology and management. Amsterdam: Academic Press, 51–78. doi:10.1016/c2015-0-00459-2.
  • D’Ambrosio, E., et al., 2017. Characterising the hydrological regime of an ungauged temporary river system: a case study. Environmental Science and Pollution Research, 24 (16), 13950–13966. doi:10.1007/s11356-016-7169-0.
  • Datry, T., et al., 2017. Science and management of intermittent rivers and ephemeral streams SMIRES. Research Ideas and Outcomes, 3, e21774. doi:10.3897/rio.3.e21774
  • De Girolamo, A.M., et al., 2017. Hydrology under climate change in a temporary river system: potential impact on water balance and flow regime. River Research and Applications, 33 (7), 1219–1232. doi:10.1002/rra.3165.
  • Delso, J., Magdaleno, F., and Fernández-Yuste, J.A., 2017. Flow patterns in temporary rivers: a methodological approach applied to southern Iberia. Hydrological Sciences Journal, 62 (10), 1551–1563. doi:10.1080/02626667.2017.1346375.
  • Döll, P. and Schmied, H.M., 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7 (1), 14037. doi:10.1088/1748-9326/7/1/014037.
  • Dörflinger, G., 2016. A new spatial basis for rivers monitoring and management in Cyprus. DProf thesis. Middlesex University. [online]. Available from: http://eprints.mdx.ac.uk/20817/ [ accessed 15 January 2020].
  • Eng, K., Wolock, D.M., and Dettinger, M.D., 2016. Sensitivity of intermittent streams to climate variations in the USA. River Research and Applications, 32 (5), 885–895. doi:10.1002/rra.2939.
  • Gallart, F., et al., 2010. Investigating hydrological regimes and processes in a set of catchments with temporary waters in Mediterranean Europe. Hydrological Sciences Journal, 53 (3), 618–628. doi:10.1623/hysj.53.3.618.
  • Gallart, F. and Llorens, P., 2004. Observations on land cover changes and water resources in the headwaters of the Ebro catchment, Iberian Peninsula. Physics and Chemistry of the Earth, Parts A/B/C, 29 (11–12), 769–773. doi:10.1016/j.pce.2004.05.004.
  • Giuntoli, I., et al., 2013. Low flows in France and their relationship to large scale climate indices. Journal of Hydrology, 482, 105–118. doi:10.1016/j.jhydrol.2012.12.038
  • Gustard, A., Bullock, A., and Dixon, J.M., 1992. Low flow estimation in the United Kingdom. Report No. 108, Institute of Hydrology, Wallingford, UK. 292p.
  • Hamed, K.H. and Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204 (1–4), 182–196. doi:10.1016/S0022-1694(97)00125-X.
  • Hannaford, J., et al., 2011. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrological Processes, 25 (7), 1146–1162. doi:10.1002/hyp.7725.
  • Hertig, E. and Tramblay, Y., 2017. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Global and Planetary Change, 151, 36–48. doi:10.1016/j.gloplacha.2016.10.015
  • Hurrell, J.W. and Folland, C.K., 2002. The relationship between tropical Atlantic rainfall and the summer circulation over the North Atlantic. CLIVAR Exchanges, 25, 52–54.
  • Ionita, M., et al., 2017. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 21, 1397–1419. doi:10.5194/hess-21-1397-2017
  • Kennard, M.J., et al., 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55 (1), 171–193. doi:10.1111/j.1365-2427.2009.02307.x.
  • Kirkby, M.J., et al., 2011. Classifying low flow hydrological regimes at a regional scale. Hydrology and Earth System Sciences, 15 (12), 3741–3750. doi:10.5194/hess-15-3741-2011.
  • Laaha, G. and Blöschl, G., 2006. Seasonality indices for regionalizing low flows. Hydrological Processes, 20 (18), 3851–3878. doi:10.1002/hyp.6161.
  • Laaha, G., et al., 2017. The European 2015 drought from a hydrological perspective. Hydrology and Earth System Sciences, 21 (6), 3001–3024. doi:10.5194/hess-21-3001-2017.
  • Linderholm, H.W., Folland, C.K., and Walther, A., 2009. A multicentury perspective on the summer North Atlantic Oscillation SNAO and drought in the eastern Atlantic Region. Journal of Quaternary Science, 24 (5), 415–425. doi:10.1002/jqs.1261.
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 13 (3), 245–259. doi:10.2307/1907187.
  • Marx, A., et al., 2018. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrology and Earth System Sciences, 22 (2), 1017–1032. doi:10.5194/hess-22-1017-2018.
  • McKee, T.B., Doesken, N.J., and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, 179–184, Anaheim, CA.
  • Myronidis, D., et al., 2018. Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resources Management, 32 (5), 1–18. doi:10.1007/s11269-018-1902-z.
  • Osuch, M., Romanowicz, R.J., and Wong, W.K., 2018. Analysis of low flow indices under varying climatic conditions in Poland. Hydrology Research, 49 (2), 373–389. doi:10.2166/nh.2017.021.
  • Oueslati, O., et al., 2015. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrological Processes, 29 (22), 4666–4682. doi:10.1002/hyp.10530.
  • Peña-Angulo, D., et al., 2020. Precipitation in Southwest Europe does not show clear trend attributable to anthropogenic forcing. Environmental Research Letters, 15 (9), 094070. doi:10.1088/1748-9326/ab9c4f.
  • Perez-Saez, J., et al., 2017. Classification and prediction of river network ephemerality and its relevance for waterborne disease epidemiology. Advances in Water Resources, 110, 263–278. doi:10.1016/j.advwatres.2017.10.003
  • Pournasiri Poshtiri, M., et al., 2019. Variability patterns of the annual frequency and timing of low streamflow days across the United States and their linkage to regional and large‐scale climate. Hydrological Processes, 33 (11), 1569–1578. doi:10.1002/hyp.13422.
  • Skoulikidis, N.T., et al., 2017. Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Science of the Total Environment, 577, 1–18. doi:10.1016/j.scitotenv.2016.10.147
  • Snelder, T.H., et al., 2013. Regionalization of patterns of flow intermittence from gauging station records. Hydrology and Earth System Sciences, 17 (7), 2685–2699. doi:10.5194/hess-17-2685-2013.
  • Spinoni, J., Naumann, G., and Vogt, J.J., 2017. Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Changes, 148, 113–130. doi:10.1016/j.gloplacha.2016.11.013
  • Stahl, K. and Demuth, S., 1999. Linking streamflow drought to the occurrence of atmospheric circulation patterns. Hydrological Sciences Journal, 44 (3), 467–482. doi:10.1080/02626669909492240.
  • Stahl, K., et al., 2010. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 14 (12), 2367–2382. doi:10.5194/hess-14-2367-2010.
  • Tramblay, Y., et al., 2010. Estimation of local extreme suspended sediment concentrations in California Rivers. Science of the Total Environment, 408 (19), 4221–4229. doi:10.1016/j.scitotenv.2010.05.001.
  • Tzoraki, O., et al., 2016. Assessing the Flow alteration of temporary streams under current conditions and changing climate by SWAT model. International Journal of River Basin Management, 14 (1), 1571–5124. doi:10.1080/15715124.2015.1049182.
  • Valty, P., et al., 2015. Impact of the North Atlantic Oscillation on Southern Europe Water Distribution: insights from Geodetic Data. Earth Interactions, 19 (10), 1–16. doi:10.1175/EI-D-14-0028.1.
  • Vicente-Serrano, S.M., Beguería, S., and Lopez-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index – SPEI. Journal of Climate, 23 (7), 1696–1718. doi:10.1175/2009JCLI2909.1.
  • Vicente-Serrano, S.M., et al., 2020. Long-term variability and trends in meteorological droughts in Europe (1851–2018). International Journal of Climatology. doi:10.1002/joc.6719.
  • Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58 (301), 236–244. doi:10.1080/01621459.1963.10500845.
  • Wilks, D.S., 2016. The stippling shows statistically significant grid points: how research results are routinely overstated and overinterpreted, and what to do about it. Bulletin of the American Meteorological Society, 97 (12), 2263–2273. doi:10.1175/BAMS-D-15-00267.1.
  • Wrzesiński, D. and Paluszkiewicz, R., 2011. Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe. Hydrology Research, 42 (1), 30–39. doi:10.2166/nh.2010.077.
  • Zimmer, M.A., et al., 2020. Zero or not? Causes and consequences of zero‐flow stream gage readings. WIREs Water, Wiley. 7. doi:10.1002/wat2.1436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.