1,354
Views
11
CrossRef citations to date
0
Altmetric
Special Issue: Advancing socio-hydrology

Socio-hydrological agent-based modelling for analysing the impacts of supply enhancement strategies on the cap-and-trade scheme

ORCID Icon, &
Pages 555-564 | Received 02 Jun 2020, Accepted 16 Dec 2020, Published online: 10 Mar 2021

References

  • Aghaie, V., Alizadeh, H., and Afshar, A., 2020a. Agent-based hydro-economic modelling for analysis of groundwater-based irrigation water market mechanisms. Agricultural Water Management, 234, 106–140. doi:10.1016/j.agwat.2020.106140
  • Aghaie, V., Alizadeh, H., and Afshar, A., 2020b. Emergence of social norms in the cap-and-trade policy: an agent-based groundwater market. Journal of Hydrology, 588, 125057. doi:10.1016/j.jhydrol.2020.125057
  • Alamdarlo, H.N., Pourmozafar, H., and Vakilpoor, M.H., 2019. Improving demand technology and internalizing external effects in groundwater market framework, case study: Qazvin plain in Iran. Agricultural Water Management, 213, 164–173. doi:10.1016/j.agwat.2018.10.005
  • Castilla-Rho, J.C., et al., 2015. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environmental Modelling & Software, 73, 305–323. doi:10.1016/j.envsoft.2015.08.018
  • Castilla-Rho, J.C., et al., 2017. Social tipping points in global groundwater management. Nature Human Behaviour, 1 (9), 640. doi:10.1038/s41562-017-0181-7
  • Chen, S., et al., 2019. A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater. Agricultural Water Management, 213, 309–323. doi:10.1016/j.agwat.2018.10.024
  • Cliff, D. and Bruten, J. (1997) Zero not enough: on the lower limit of agent intelligence for continuous double auction markets. Bristol, England: HP Laboratories.
  • Connor, J.D., Bryan, B.A., and Nolan, M., 2016. Cap and trade policy for managing water competition from potential future carbon plantations. Environmental Science & Policy, 66, 11–22. doi:10.1016/j.envsci.2016.07.005
  • Du, E., et al., 2017. Evaluating the impacts of farmers’ behaviors on a hypothetical agricultural water market based on double auction. Water Resources Research, 53, 4053–4072. doi:10.1002/2016WR020287
  • Epstein, J.M., 2006. Generative social science: studies in agent-based computational modeling. Princeton, NJ: Princeton University Press.
  • Erfani, T., Binions, O., and Harou, J.J., 2014. Simulating water markets with transaction costs. Water Resources Research, 50, 4726–4745. doi:10.1002/2013WR014493
  • Feng, S., et al., 2007. Assessing the impacts of South-to-North water transfer project with decision support systems. Decision Support Systems, 42, 1989–2003. doi:10.1016/j.dss.2004.11.004
  • Feng, T., et al., 2018. Effect of inter-basin water transfer on water quality in an urban lake: a combined water quality index algorithm and biophysical modelling approach. Ecological Indicators, 92, 61–71. doi:10.1016/j.ecolind.2017.06.044
  • Gill, B., et al., 2017. Economic, social and resource management factors influencing groundwater trade: evidence from Victoria, Australia. Journal of Hydrology, 550, 253–267. doi:10.1016/j.jhydrol.2017.04.055
  • Gonzales, P. and Ajami, N., 2019. Goal-based water trading expands and diversifies supplies for enhanced resilience. Nature Sustainability, 2, 138–147. doi:10.1038/s41893-019-0228-z
  • Gu, C., et al., 2017. Effects of climate change and human activities on runoff and sediment inputs of the largest freshwater lake in China, Poyang Lake. Hydrological Sciences Journal, 62, 2313–2330. doi:10.1080/02626667.2017.1372856
  • Gurung, P. and Bharati, L., 2012. Downstream impacts of the Melamchi Inter-Basin Water Transfer Plan (MIWTP) under current and future climate change projections. Hydro Nepal: Journal of Water, Energy and Environment, 23–29. doi:10.3126/hn.v11i1.7199
  • Jeong, H., et al., 2020. Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale. Agricultural Water Management, 231, 105983. doi:10.1016/j.agwat.2019.105983
  • Karamouz, M., Mojahedi, S.A., and Ahmadi, A., 2009. Interbasin water transfer: economic water quality-based model. Journal of Irrigation and Drainage Engineering, 136, 90–98. doi:10.1061/(ASCE)IR.1943-4774.0000140
  • Li, K., Huang, G., and Wang, S., 2019. Market-based stochastic optimization of water resources systems for improving drought resilience and economic efficiency in arid regions. Journal of Cleaner Production, 233, 522–537. doi:10.1016/j.jclepro.2019.05.379
  • Loch, A., Adamson, D., and Dumbrell, N., 2020. The fifth stage in water management: policy lessons for water governance. Water Resources Research, 56 (5). doi:10.1029/2019WR026714
  • Maknoon, R., Kazem, M., and Hasanzadeh, M., 2012. Inter-basin water transfer projects and climate change: the role of allocation protocols in economic efficiency of the project. Case study: Dez to Qomrood Inter-Basin Water Transmission Project (Iran). Wuhan, China: Scientific Research.
  • Manjunatha, A., et al., 2011. Impact of groundwater markets in India on water use efficiency: a data envelopment analysis approach. Journal of Environmental Management, 92, 2924–2929. doi:10.1016/j.jenvman.2011.07.001
  • Manson, S., 2003. Validation and verification of multi-agent models for ecosystem management. In: M.A. Janssen, ed. Complexity and ecosystem management: the theory and practice of multi-agent approaches. Cheltenham, UK: Edward Elgar, 63–74.
  • Michaelis, T., Brandimarte, L., and Mazzoleni, M., 2020. Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrological Sciences Journal, 65 (9), 1458–1473. doi:10.1080/02626667.2020.1750617
  • Nasiri-Gheidari, O., Marofi, S., and Adabi, F., 2018. A robust multi-objective bargaining methodology for inter-basin water resource allocation: a case study. Environmental Science and Pollution Research, 25, 2726–2737. doi:10.1007/s11356-017-0527-8
  • Nouri, H., et al., 2019. Water scarcity alleviation through water footprint reduction in agriculture: the effect of soil mulching and drip irrigation. Science of the Total Environment, 653, 241–252. doi:10.1016/j.scitotenv.2018.10.311
  • Ostrom, E., 1990. Governing the commons: the evolution of institutions for collective action. Cambridge, UK: Cambridge University Press.
  • Peng, Y., et al., 2017. Multi-core parallel particle swarm optimization for the operation of inter-basin water transfer-supply systems. Water Resources Management, 31, 27–41. doi:10.1007/s11269-016-1506-4
  • Ponnambalam, K. and Mousavi, S.J., 2020. CHNS modeling for study and management of human–water interactions at multiple scales. Water, 12, 1699. doi:10.3390/w12061699
  • Pouladi, P., et al., 2019. Agent-based socio-hydrological modeling for restoration of Urmia Lake: application of theory of planned behavior. Journal of Hydrology, 576, 736–748. doi:10.1016/j.jhydrol.2019.06.080
  • Pouladi, P., et al., 2020. Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 65 (8), 1249–1261.
  • Rani, D., Srivastava, D., and Gulati, T., 2016. A set of linked optimization models for an inter-basin water transfer. Hydrological Sciences Journal, 61, 371–392. doi:10.1080/02626667.2014.986484
  • Rey, D., Garrido, A., and Calatrava, J., 2016. An innovative option contract for allocating water in inter-basin transfers: the case of the Tagus-Segura Transfer in Spain. Water Resources Management, 30, 1165–1182. doi:10.1007/s11269-015-1219-0
  • Seidl, C., Wheeler, S.A., and Zuo, A., 2020. Treating water markets like stock markets: key water market reform lessons in the Murray-Darling Basin. Journal of Hydrology, 581, 124399. doi:10.1016/j.jhydrol.2019.124399
  • Sinha, P., et al., 2020. A new framework for integrated, holistic, and transparent evaluation of inter-basin water transfer schemes. Science of the Total Environment, 721, 137646. doi:10.1016/j.scitotenv.2020.137646
  • Sivapalan, M., et al., 2014. Socio‐hydrology: use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2, 225–230. doi:10.1002/2013EF000164
  • Tong, X., et al., 2018. Behaviour change in post-consumer recycling: applying agent-based modelling in social experiment. Journal of Cleaner Production, 187, 1006–1013. doi:10.1016/j.jclepro.2018.03.261
  • Wheeler, S., et al., 2014. Reviewing the adoption and impact of water markets in the Murray–Darling Basin, Australia. Journal of Hydrology, 518, 28–41. doi:10.1016/j.jhydrol.2013.09.019
  • Wheeler, S.A., et al., 2017. Developing a water market readiness assessment framework. Journal of Hydrology, 552, 807–820. doi:10.1016/j.jhydrol.2017.07.010
  • Wilensky, U. and Rand, W., 2015. An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with NetLogo.  Cambridge, MA: MIT Press.
  • Zhang, E., Xu, Z., and Yang, Z., 2018. Bottom-up quantification of inter-basin water transfer vulnerability to climate change. Ecological Indicators, 92, 195–206. doi:10.1016/j.ecolind.2017.04.019
  • Zhou, Y., et al., 2017. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China. Journal of Hydrology, 553, 584–595. doi:10.1016/j.jhydrol.2017.08.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.