412
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Canopy interception estimates in a Norway spruce forest and their importance for hydrological modelling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1233-1247 | Received 03 Apr 2020, Accepted 18 Mar 2021, Published online: 10 Jun 2021

References

  • Arnold, J.G., Allen, P.M., and Bernhardt, A., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology, 142, 47–69. doi:10.1016/0022-1694(93)90004-S
  • Bergström, S., 1992. The HBV model: its structure and applications. Norrköping: Swedish Meteorological and Hydrological Institute (SMHI).
  • Bryant, M., Bhata, S., and Jacobs, J., 2005. Measurements and modeling of throughfall variability for five forest communities in the southeastern US. Journal of Hydrology, 312, 95–108. doi:10.1016/j.jhydrol.2005.02.012
  • Carlyle-Moses, D.E. and Gash, J.H.C., 2011. Rainfall interception loss by forest canopies. In: D.F. Levia, D. Carlyle-Moses, and T. Tanaka, eds. Forest hydrology and biogeochemistry. Heidelberg, Netherlands: Springer, 407–423.
  • David, T.S., et al., 2006. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrological Processes, 20, 2713–2726. doi:10.1002/hyp.6062
  • Dohnal, M., et al., 2014. Rainfall interception and spatial variability of throughfall in spruce stand. Journal of Hydrology and Hydromechanics, 62 (4), 277–284. doi:10.2478/johh-2014-0037.
  • Eliáš, V., Tesař, M., and Buchtele, J., 1995. Occult precipitation: sampling, chemical analysis and process modelling in the Sumava Mts., (Czech Republic) and in the Taunus Mts. (Germany). Journal of Hydrology, 166, 409–420. doi:10.1016/0022-1694(94)05096-G
  • Gash, J., Lloyd, C., and Lachaud, G., 1995. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170, 79–86. doi:10.1016/0022-1694(95)02697-N
  • Gash, J.H.C., 1979. An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 105, 43–55. doi:10.1002/qj.49710544304
  • Gash, J.H.C. and Morton, A.J., 1978. An application of the Rutter model to the estimation of the interception loss from Thetford forest. Journal of Hydrology, 38, 49–58. doi:10.1016/0022-1694(78)90131-2
  • Gerrits, A.M.J., et al., 2007. New technique to measure forest floor interception – an application in a beech forest in Luxembourg. Hydrology and Earth System Sciences, 11, 695–701. doi:10.5194/hess-11-695-2007
  • Hadiwijaya, B., et al., 2020. The dynamics of transpiration to evapotranspiration ratio under wet and dry canopy conditions in a humid Boreal forest. Forests, 11, 237. doi:10.3390/f11020237
  • Hlavinka, P., et al., 2011. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agricultural Water Management, 98, 1249–1261. doi:10.1016/j.agwat.2011.03.011
  • Holko, L., et al., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 594–599. doi:10.2478/s11756-009-0087-6
  • Jeníček, M. and Ledvinka, O., 2020. Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrology and Earth System Sciences, 24, 3475–3491. doi:10.5194/hess-24-3475-2020
  • Jeong, S., Otsuki, K., and Farahnak, M., 2019. Relationship between stand structures and rainfall partitioning in dense unmanaged Japanese cypress plantations. Journal of Agricultural Meteorology, 75 (2), 92–102. doi:10.2480/agrmet.D-18-00030.
  • Keim, R.F., Skaugset, A.E., and Weiler, M., 2005. Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 314, 263–274. doi:10.1016/j.jhydrol.2005.03.021
  • Kermavnar, J. and Vilhar, U., 2017. Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosystems, 20, 1373–1387. doi:10.1007/s11252-017-0689-7
  • Kofroňová, J., Tesař, M., and Šípek, V., 2019. The influence of observed and modelled net longwave radiation on the rate of estimated potential evapotranspiration. Journal of Hydrology and Hydromechanics, 67 (3), 280–288. doi:10.2478/johh-2019-0011.
  • Krečmer, V., 1968. K intercepci srážek ve středohorské smrčině (On the interception of spruce forest in mountainous regions). Opera Corcontica, 5, 83–96.
  • Krečmer, V. and Fojt, V., 1981. Intercepce smrčin chlumní oblasti (Interception of conifer trees in middle altitudes). Vodohospodářský časopis, 1, 33–49.
  • Larssen, T., Høgåsen, T., and Cosby, B.J., 2007. Impact of time series data on calibration and predictionuncertainty for a deterministic hydrogeochemical model. Ecological Modelling, 207, 22–33. doi:10.1016/j.ecolmodel.2007.03.016
  • Li, X., et al., 2016. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics. Agricultural and Forest Meteorology, 218–219, 65–73. doi:10.1016/j.agrformet.2015.11.017
  • Linhoss, A.C. and Siegert, C.M., 2016. A comparison of five forest interception models using global sensitivity and uncertainty analysis. Journal of Hydrology, 538, 109–116. doi:10.1016/j.jhydrol.2016.04.011
  • Liu, J., Zhang, Z., and Zhang, M., 2018. Impacts of forest structure on precipitation interception and run-off generation in a semiarid region in northern China. Hydrological Processes, 32, 2362–2376. doi:10.1002/hyp.13156
  • Llorens, P. and Domingo, F., 2007. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335, 37–54. doi:10.1016/j.jhydrol.2006.10.032
  • Loustau, D., Berbigier, P., and Granier, A., 1992. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash’s analytical model of interception. Journal of Hydrology, 138, 469–485. doi:10.1016/0022-1694(92)90131-E
  • Magliano, P.N., Whitworth-Hulse, J.I., and Baldi, G., 2019. Interception, throughfall and stemflow partition in drylands: global synthesis and meta-analysis. Journal of Hydrology, 568, 638–645. doi:10.1016/j.jhydrol.2018.10.042
  • Mauch, K.J., et al., 2008. New weighing method to measure shoot water interception. Journal of Irrigation and Drainage Engineering, 134 (3), 349–355. doi:10.1061/(ASCE)0733-9437(2008)134:3(349).
  • Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205–234.
  • Moore, G., Bond, B.J., and Jones, J.A., 2011. A comparison of annual transpiration and productivity in monoculture and mixed-species Douglas-fir and red alder stands. Forest Ecology and Management, 262, 2263–2270. doi:10.1016/j.foreco.2011.08.018
  • Muzylo, A., et al., 2009. A review of rainfall interception modelling. Journal of Hydrology, 370 (1–4), 191–206. doi:10.1016/j.jhydrol.2009.02.058.
  • Nanko, K., Hotta, N., and Suzuki, M., 2006. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology, 329, 422–431. doi:10.1016/j.jhydrol.2006.02.036
  • Návar, J., 2020. Modeling rainfall interception loss components of forest. Journal of Hydrology, 584, 124449. doi:10.1016/j.jhydrol.2019.124449
  • Pearce, A.J. and Rowe, L.K., 1981. Rainfall interception in a multistoried, evergreen mixed forest: estimates using Gash’s analytical model. Journal of Hydrology, 49, 341–353. doi:10.1016/S0022-1694(81)80018-2
  • Peng, H., et al., 2014. Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China. Hydrological Processes, 28, 1734–1741. doi:10.1002/hyp.9713
  • Pypker, T.G., et al., 2005. The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 130, 113–129. doi:10.1016/j.agrformet.2005.03.003
  • Ringgaard, R., Herbst, M., and Friborg, T., 2014. Partitioning forest evapotranspiration: interception evaporation and the impact of canopy structure, local and regional advection. Journal of Hydrology, 517, 677–690. doi:10.1016/j.jhydrol.2014.06.007
  • Rutter, A.J., Morton, A.J., and Robins, P.C., 1975. A predictive model of rainfall interception in forest: II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12 (1), 367–380. doi:10.2307/2401739.
  • Savenije, H.H.G., 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18, 1507–1511. doi:10.1002/hyp.5563
  • Seibert, J., 1997. Estimation of parameter uncertainty in the HBV model. Nordic Hydrology, 28, 247–262. doi:10.2166/nh.1998.15
  • Seibert, J., 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences, 4, 215–224. doi:10.5194/hess-4-215-2000
  • Seibert, J. and Vis, M., 2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 16, 3315–3325. doi:10.5194/hess-16-3315-2012
  • Šípek, V. and Tesař, M., 2014. Seasonal snow accumulation in the mid-latitude forested catchment. Biologia, 69, 1562–1569. doi:10.2478/s11756-014-0468-3
  • Šípek, V. and Tesař, M., 2016. Validation of a mesoscale hydrological model in a small-scale forested catchment. Hydrology Research, 47 (1), 27–41. doi:10.2166/nh.2015.220.
  • Šípek, V. and Tesař, M., 2017. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters. Hydrological Processes, 31, 1438–1452. doi:10.1002/hyp.11121
  • Staelens, J., et al., 2008. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22, 33–45. doi:10.1002/hyp.6610
  • Su, L., et al., 2016. Modelling interception loss using the revised Gash model: a case study in a mixed evergreen and deciduous broadleaved forest in China. Ecohydrology, 9, 1580–1589. doi:10.1002/eco.1749
  • Tolasz, R., et al., 2007. Climate atlas of Czechia. Prague: Czech Hydrometeorological Institute, 256.
  • Vaca, C.C., Ghimire, C.P., and Van der Tol, C., 2018. Spatial patterns and temporal stability of throughfall in a mature Douglas-fir forest. Water, 10 (3), 317.
  • Van Stan, J.T., Van Stan, J.H., and Levia, D.F., 2014. Meteorological influences on stemflowgeneration across diameter size classes of two morphologically distinct deciduous species. International Journal of Biometeorology, 58, 2059–2069. doi:10.1007/s00484-014-0807-7
  • Wang, D. and Wang, L., 2017. Dynamics of evapotranspiration partitioning for apple trees ofdifferent ages in a semiarid region of northwest China. Agricultural Water Management, 191, 1–15. doi:10.1016/j.agwat.2017.05.010
  • Zabret, K., Rakovec, J., and Šraj, M., 2018. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. Journal of Hydrology, 558, 29–41. doi:10.1016/j.jhydrol.2018.01.025
  • Zhang, Z.S., et al., 2016. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Scientific Reports, 6, 10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.