1,645
Views
6
CrossRef citations to date
0
Altmetric
Research Article

When does a parsimonious model fail to simulate floods? Learning from the seasonality of model bias

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1288-1305 | Received 23 Dec 2020, Accepted 22 Mar 2021, Published online: 25 Jun 2021

References

  • Andréassian, V., et al., 2009. HESS opinions “crash tests for a standardized evaluation of hydrological models”. Hydrology and Earth System Sciences, 13, 1757–1764. doi:10.5194/hess-13-1757-2009.
  • Andréassian, V., et al., 2014. Seeking genericity in the selection of parameter sets: impact on hydrological model efficiency. Water Resources Research, 50, 8356–8366. doi:10.1002/2013WR014761.
  • Barbu, A.L., et al., 2011. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study. Biogeosciences, 8, 1971–1986. doi:10.5194/bg-8-1971-2011.
  • Bennett, N.D., et al., 2013. Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20. doi:10.1016/j.envsoft.2012.09.011.
  • Berghuijs, W.R., et al., 2014. Patterns of similarity of seasonal water balances: a window into streamflow variability over a range of time scales. Water Resources Research, 50, 5638–5661. doi:10.1002/2014WR015692.
  • Berthet, L., et al., 2009. How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrology and Earth System Sciences, 13 (6), 819–831. doi:10.5194/hess-13-819-2009.
  • Berthet, L., 2010. Flood forecasting at the hourly time step: towards a better assimilation of streamflow information in a hydrological model. PhD Thesis (in French). AgroParisTech.
  • Beven, K.J., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal, 61, 1652–1665. doi:10.1080/02626667.2015.1031761.
  • Blöschl, G., et al., 2013. Runoff prediction in ungauged basins: synthesis across processes places and scales. Cambridge University Press. doi:10.1017/CBO9781139235761.
  • Borah, D.K., et al., 2007. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Journal of Hydrologic Engineering, 12 (6), 605–616. doi:10.1061/(ASCE)1084-0699(2007)12:6(605).
  • Brunner, M.I., et al., 2020. Flood hazard and change impact assessments may profit from rethinking model calibration strategies. preprint. Catchment hydrology/Modelling Approaches. doi:10.5194/hess-2020-192.
  • Butts, M.B., et al., 2004. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298, 242–266. doi:10.1016/j.jhydrol.2004.03.042.
  • Carsell, K.M., Pingel, N.D., and Ford, D.T., 2004. Quantifying the benefit of a flood warning system. Natural Hazards Review, 5, 131–140. doi:10.1061/(ASCE)15276988(2004)5:3(131).
  • Clark, M.P., et al., 2008. Framework for Understanding Structural Errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resources Research, 44, W00B02+. doi:10.1029/2007WR006735.
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48. doi:10.1029/2011WR011721.
  • Coron, L., et al., 2017. The Suite of lumped GR hydrological models in an R package. Environmental Modelling and Software, 94, 166–171. doi:10.1016/j.envsoft.2017.05.002.
  • Coron, L., et al., 2021. airGR: suite of GR hydrological models for precipitation-runoff modelling. R package version 1.6.9.27. doi:10.15454/EX11NA. Available from: https://CRAN.R-project.org/package=airGR/.
  • Coustau, M., et al., 2015. Impact of improved meteorological forcing, profile of soil hydraulic conductivity and data assimilation on an operational Hydrological Ensemble Forecast System over France. Journal of Hydrology, 525, 781–792. doi:10.1016/j.jhydrol.2015.04.022.
  • Crochemore, L., et al., 2015. Comparing expert judgement and numerical criteria for hydrograph evaluation. Hydrological Sciences Journal, 60, 402–423. doi:10.1080/02626667.2014.903331.
  • de Boer-Euser, T., et al., 2017. Looking beyond general metrics for model comparison – lessons from an international model intercomparison study. Hydrology and Earth System Sciences, 21, 423–440. doi:10.5194/hess-21-423-2017.
  • Delaigue, O., et al., 2020. Database of watershed-scale hydroclimatic observations in France. France: INRAE, HYCAR Research Unit, Hydrology group, Antony. https://webgr.inrae.fr/base-de-donnees.
  • Donnelly, C., Andersson, J.C., and Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61, 255–273. doi:10.1080/02626667.2015.1027710.
  • Ducharne, A., 2009. Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrology and Earth System Sciences, 13, 2399–2412. doi:10.5194/hess-13-2399-2009.
  • Euser, T., et al., 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 17, 1893–1912. doi:10.5194/hess-17-1893-2013.
  • Ficchì, A., 2017. An adaptive hydrological model for multiple time-steps: diagnostics and improvements based on fluxes consistency. Ph.D. thesis. Paris: UPMC.
  • Ficchì, A., Perrin, C., and Andréassian, V., 2016. Impact of temporal resolution of inputs on hydrological model performance: an analysis based on 2400 flood events. Journal of Hydrology, 538, 454–470. doi:10.1016/j.jhydrol.2016.04.016.
  • Ficchì, A., Perrin, C., and Andréassian, V., 2019. Hydrological modelling at multiple sub-daily time steps: model improvement via flux-matching. Journal of Hydrology, 575, 1308–1327. doi:10.1016/j.jhydrol.2019.05.084.
  • Fowler, K.J.A., et al., 2016. Simulating runoff under changing climatic conditions: revisiting an apparent deficiency of conceptual rainfall-runoff models. Water Resources Research, 52, 1820–1846. doi:10.1002/2015WR018068.
  • Gnann, S.J., Howden, N.J.K., and Woods, R.A., 2020. Hydrological signatures describing the translation of climate seasonality into streamflow seasonality. Hydrology and Earth System Sciences, 24, 561–580. doi:10.5194/hess-24-561-2020.
  • Grimaldi, S., et al., 2020. Continuous hydrologic modelling for design simulation in small and ungauged basins: a step forward and some tests for its practical use. Journal of Hydrology, 125664. doi:10.1016/j.jhydrol.2020.125664.
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377, 80–91. doi:10.1016/j.jhydrol.2009.08.003.
  • Gupta, H.V., et al., 2014. Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 18, 463–477. doi:10.5194/hess-18-463-2014.
  • Gupta, H.V., Wagener, T., and Liu, Y., 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes, 22, 3802–3813. doi:10.1002/hyp.6989.
  • Gustard, A., Bullock, A., and Dixon, J., 1992. Low flow estimation in the United Kingdom. Institute of Hydrology. http://nora.nerc.ac.uk/id/eprint/6050/1/IH_108.pdf
  • Hallegatte, S., 2012. A cost effective solution to reduce disaster losses in developing countries: hydroMeteorological Services, early warning, and evacuation. The World Bank. doi:10.1596/1813-9450-6058.
  • Hapuarachchi, H.A.P., Wang, Q.J., and Pagano, T.C., 2011. A review of advances in flash flood forecasting. Hydrological Processes, 25, 2771–2784. doi:10.1002/hyp.8040.
  • Hrachowitz, M., et al., 2014. Process consistency in models: the importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 50, 7445–7469. doi:10.1002/2014WR015484.
  • Jain, S.K., et al., 2018. A Brief review of flood forecasting techniques and their applications. International Journal of River Basin Management, 16, 329–344. doi:10.1080/15715124.2017.1411920.
  • Javelle, P., et al., 2010. Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. Journal of Hydrology, 394, 267–274. doi:10.1016/j.jhydrol.2010.03.032.
  • Jeuland, M., et al., 2019. The economic impacts of water information systems: a systematic review. Water Resources and Economics, 26, 100128. doi:10.1016/j.wre.2018.09.001
  • Kim, H. and Lee, S., 2014. Assessment of a seasonal calibration technique using multiple objectives in rainfallrunoff analysis. Hydrological Processes, 28, 2159–2173. doi:10.1002/hyp.9785.
  • Klemeš, V., 1986. Operational testing of hydrologic simulation models. Hydrological Sciences Journal, 31 (1), 13–24. doi:10.1080/02626668609491024.
  • Knoben, W.J.M., et al., 2020. A brief analysis of conceptual model structure uncertainty using 36 models and 559 catchments. Water Resources Research, 56. doi:10.1029/2019WR025975.
  • Lane, R.A., et al., 2019. Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology and Earth System Sciences, 23, 4011–4032. doi:10.5194/hess-23-4011-2019.
  • Le Moine, N., 2008. Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des modèles pluie-débit? Ph.D. thesis. UPMC, Cemagref.
  • Leleu, I., et al., 2014. La refonte du système d’information national pour la gestion et la mise à disposition des données hydrométriques. La Houille Blanche, 25–32. doi:10.1051/lhb/2014004.
  • Lobligeois, F., 2014. Mieux connaître la distribution spatiale des pluies améliore-t-il la modélisation des crues? Ph.D. thesis. Paris: UPMC, AgroParisTech.
  • Lobligeois, F., et al., 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System Sciences, 18, 575–594. doi:10.5194/hess-18-575-2014.
  • Loritz, R., et al., 2021. The role and value of distributed precipitation data in hydrological models. Hydrology and Earth System Sciences, 25, 147–167. doi:10.5194/hess-25-147-2021.
  • Massmann, C., 2020. Identification of factors influencing hydrologic model performance using a top-down approach in a large number of U.S. catchments. Hydrological Processes, 34, 4–20. doi:10.1002/hyp.13566.
  • Mathevet, T., et al., 2006. A bounded version of the Nash-Sutcliffe criterion for better model assessment on large sets of basins. IAHS-AISH Publication, 307, 211.
  • Mathevet, T., et al., 2020. Assessing the performance and robustness of two conceptual rainfall-runoff models on a worldwide sample of watersheds. Journal of Hydrology, 585, 124698. doi:10.1016/j.jhydrol.2020.124698.
  • McMillan, H., Booker, D., and Cattoën, C., 2016. Validation of a national hydrological model. Journal of Hydrology, 541, 800–815. doi:10.1016/j.jhydrol.2016.07.043.
  • McMillan, H., Westerberg, I., and Branger, F., 2017. Five guidelines for selecting hydrological signatures. Hydrological Processes, 31, 4757–4761. doi:10.1002/hyp.11300.
  • Melsen, L.A., et al., 2018. Mapping (dis)agreement in hydrologic projections. Hydrology and Earth System Sciences, 22, 1775–1791. doi:10.5194/hess-22-1775-2018.
  • Michel, C., 1991. Hydrologie appliquée aux petits bassins ruraux. Antony, France: Cemagref.
  • Mizukami, N., et al., 2019. On the choice of calibration metrics for “high-flow” estimation using hydrologic models. Hydrology and Earth System Sciences, 23, 2601–2614. doi:10.5194/hess-23-2601-2019.
  • Monteil, C., et al., 2020. Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm. Hydrology and Earth System Sciences, 24, 3189–3209. doi:10.5194/hess-24-3189-2020.
  • Muleta, M.K., 2012. Improving model performance using season-based evaluation. Journal of Hydrologic Engineering, 17, 191–200. doi:10.1061/(ASCE)HE.1943-5584.0000421.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, Part I: a discussion of principles. Journal of Hydrology, 27 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Nicolle, P., et al., 2014. Benchmarking hydrological models for low-flow simulation and forecasting on French catchments. Hydrology and Earth System Sciences, 18, 2829–2857. doi:10.5194/hess-18-2829-2014.
  • Oudin, L., et al., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology, 303, 290–306. doi:10.1016/j.jhydrol.2004.08.026.
  • Oudin, L., et al., 2006. Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resources Reasearch, 42. doi:10.1029/2005WR004636.
  • Pagano, T.C., et al., 2014. Challenges of operational river forecasting. Journal of Hydrometeorology, 15, 1692–1707. doi:10.1175/JHM-D-13-0188.1.
  • Pappenberger, F., et al., 2016. Hydrological ensemble prediction systems around the globe. In: Q. Duan, et al., eds. Handbook of hydrometeorological ensemble forecasting. Berlin, Heidelberg: Springer Berlin Heidelberg, 1–35. doi:10.1007/978-3-642-40457-3_47-1.
  • Peredo, D., et al., 2021. Investigating hydrological model versatility to simulate extreme flood events. Hydrological Sciences Journal, In Review.
  • Perrin, C., et al., 2008. Discrete parameterization of hydrological models: evaluating the use of parameter sets libraries over 900 catchments. Water Resources Research, 44. doi:10.1029/2007WR006579.
  • Perrin, C., Michel, C., and Andréassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 242, 275–301. doi:10.1016/S0022-1694(00)00393-0.
  • Poncelet, C., et al., 2017. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resources Research, 53, 7247–7268. doi:10.1002/2016WR019991.
  • Roundy, J.K., Duan, Q., and Schaake, J., 2018. Hydrological predictability, scales, and uncertainty issues. In: Q. Duan, et al., eds. Handbook of hydrometeorological ensemble forecasting. Berlin, Heidelberg: Springer, 1–29. doi:10.1007/978-3-642-40457-3_8-1.
  • Ruiz-Villanueva, V., et al., 2012. Extreme flood response to short-duration convective rainfall in South-West Germany. Hydrology and Earth System Sciences, 16, 1543–1559. doi:10.5194/hess-16-1543-2012.
  • Sauquet, E., Gottschalk, L., and Krasovskaia, I., 2008. Estimating mean monthly runoff at ungauged locations: an application to France. Hydrology Research, 39, 403–423. doi:10.2166/nh.2008.331.
  • Schaefli, B. and Gupta, H.V., 2007. Do Nash values have value? Hydrological Processes, 21, 2075–2080. doi:10.1002/hyp.6825.
  • Seibert, J., 2001. On the need for benchmarks in hydrological modelling. Hydrological Processes, 15, 1063–1064. doi:10.1002/hyp.446.
  • Seibert, J., et al., 2018. Upper and lower benchmarks in hydrological modelling. Hydrological Processes, 32, 1120–1125. doi:10.1002/hyp.11476.
  • Shafii, M. and Tolson, B.A., 2015. Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research, 51, 3796–3814. doi:10.1002/2014WR016520.
  • Stanić, M., et al., 2018. Extreme flood reconstruction by using the 3DNet platform for hydrological modelling. Journal of Hydroinformatics, 20 (4), 766–783. doi:10.2166/hydro.2017.050.
  • Stephens, C.M., Johnson, F.M., and Marshall, L.A., 2018. Implications of future climate change for event-based hydrologic models. Advances in Water Resources, 119, 95–110. doi:10.1016/j.advwatres.2018.07.004.
  • Tabary, P., et al., 2012. A 10-year (1997–2006) reanalysis of quantitative precipitation estimation over France: methodology and first results. IAHS Publication, 351, 255–260.
  • Tarasova, L., et al., 2020. A process-based framework to characterize and classify runoff events: the event typology of Germany. Water Resources Research, 56. doi:10.1029/2019WR026951.
  • Thirel, G., et al., 2010a. A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: description and validation of the assimilation system. Hydrology and Earth System Sciences, 14, 1623–1637. doi:10.5194/hess-14-1623-2010.
  • Thirel, G., et al., 2010b. A past discharge assimilation system for ensemble streamflow forecasts over France – Part 2: impact on the ensemble streamflow forecasts. Hydrology and Earth System Sciences, 14, 1639–1653. doi:10.5194/hess-14-1639-2010.
  • Valéry, A., 2010. Precipitation-streamflow modelling under snow influence. Design of a snow module and evaluation on 380 catchments. PhD thesis (in French). Cemagref (Antony), AgroParisTech (Paris), 405 pages.
  • Van Esse, W.R., et al., 2013. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrology and Earth System Sciences, 17, 4227–4239. doi:10.5194/hess-17-4227-2013.
  • Vaze, J., et al., 2010. Climate non-stationarity – Validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394, 447–457. doi:10.1016/j.jhydrol.2010.09.018.
  • Vaze, J., et al., 2011. Conceptual rainfall–runoff model performance with different spatial rainfall inputs. Journal of Hydrometeorology, 12, 1100–1112. doi:10.1175/2011JHM1340.1.
  • Vergara, H., et al., 2016. Estimating a-priori kinematic wave model parameters based on regionalization for flash flood forecasting in the Conterminous United States. Journal of Hydrology, 541, 421–433. doi:10.1016/j.jhydrol.2016.06.011.
  • Viatgé, J., et al., 2019. Towards an enhanced temporal flexibility of the GRP flood forecasting operational model (in French). La Houille Blanche, 2, 72–80. doi:10.1051/lhb/2019017.
  • Vidal, J.P., et al., 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30, 1627–1644. doi:10.1002/joc.2003.
  • Wang, A., Li, K.Y., and Lettenmaier, D.P., 2008. Integration of the variable infiltration capacity model soil hydrology scheme into the community land model. Journal of Geophysical Research, 113, D09111. doi:10.1029/2007JD009246.
  • Willems, P., 2009. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modelling and Software, 24, 311–321. doi:10.1016/j.envsoft.2008.09.005.
  • Yilmaz, K.K., Gupta, H.V., and Wagener, T., 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research, 44. doi:10.1029/2007WR006716.
  • Zanchetta, A. and Coulibaly, P., 2020. Recent advances in real-time pluvial flash flood forecasting. Water, 12, 570. doi:10.3390/w12020570.
  • Zhang, X., et al., 2017. Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 10, 255–259. doi:10.1038/ngeo2911.
  • Zoccatelli, D., et al., 2011. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15, 3767–3783. doi:10.5194/hess-15-3767-2011.