232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multifractal characterisation of overland flow of nature-based solutions scenarios

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1054-1064 | Received 03 Aug 2021, Accepted 15 Feb 2022, Published online: 10 May 2022

References

  • Adeyemo, O.J., et al. 2008. Sensitivity analysis of surface runoff generation for pluvial urban flooding. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 1–10.
  • Ahiablame, L. and Shakya, R., 2016. Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91. doi:10.1016/j.jenvman.2016.01.036
  • Alves de Souza, B., et al. 2018. Multi-hydro hydrological modelling of a complex peri-urban catchment with storage basins comparing C-band and X-band radar rainfall data. Hydrological Sciences Journal, 63 (11), 1619–1635. doi:10.1080/02626667.2018.1520390
  • Berggren, K., et al. 2012. Hydraulic impacts on urban drainage systems due to changes in rainfall caused by climatic change. Journal of Hydrologic Engineering, 17 (1), 92–98. doi:10.1061/(asce)he.1943-5584.0000406
  • Eckart, K., Mcphee, Z., and Bolisetti, T., 2017. Science of the total environment performance and implementation of low impact development – a review ☆. Science of the Total Environment, 607–608, 413–432. doi:10.1016/j.scitotenv.2017.06.254
  • El Tabach, E., et al. 2009: Multi-Hydro: a spatially distributed numerical model to assess and manage runoff processes in peri- urban watersheds. Poster session presentation at the Final Conference of the COST Action C22, Road map towards a flood resilient urban environment, Paris, France.
  • European Commission. 2015. Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities, final report of the horizon 2020 expert group on “Nature-based solutions and re-naturing cities”. Luxembourg: Publications Office of the European Union, 1–17. 10.2777/765301.
  • European Environment Agency. 2020. Economic damage caused by weather and climate-related extreme events in Europe (1980-2017) [online]. NatCatSERVICE provided by Munich Re. Available from: https://www.eea.europa.eu/data-and-maps/daviz/natural-disasters-events-3/#tab-chart_5 [Accessed April 2022].
  • Fiori, A. and Volpi, E., 2020. On the effectiveness of LID infrastructures for the attenuation of urban flooding at the catchment scale. Water Resources Research, 56 (5), 1–17. doi:10.1029/2020WR027121
  • Frish, U. and Parisi, G., 1985. Fully developed turbulence and intermittency. In: M. Ghil, R. Benzi and G. Parisi, eds. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. New York: North-Holland, 71–88.
  • Gao, L., et al. 2019. Evaluating metropolitan flood coping capabilities under heavy storms. Journal of Hydrologic Engineering, 24 (6), 1–13. doi:10.1061/(ASCE)HE.1943-5584.0001793
  • Giangola-Murzyn, A., 2013. Modélisation et paramétrisation hydrologique de la ville, résilience aux inondations. Thesis (PhD), Université Paris-Est.
  • Gires, A., et al. 2013. Multifractal analysis of a semi-distributed urban hydrological model. Urban Water Journal, 10 (3), 195–208. doi:10.1080/1573062X.2012.716447
  • Gires, A., et al. 2015. Impacts of small scale rainfall variability in urban areas: a case study with 1D and 1D/2D hydrological models in a multifractal framework. Urban Water Journal, 12 (8), 607–617. doi:10.1080/1573062X.2014.923917
  • Gires, A., et al. 2018. Multifractal characterisation of a simulated surface flow: a case study with Multi-hydro in Jouy-en-josas, France. Journal of Hydrology, 558, 482–495. doi:10.1016/j.jhydrol.2018.01.062
  • Hu, M., et al. 2017. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. Journal of Environmental Management, 193, 430–438. doi:10.1016/j.jenvman.2017.02.020
  • Hubert, P., et al. 1993. Multifractals and extreme rainfall events. Geophysical Research Letters, 20 (10), 931–934. doi:10.1029/93GL01245
  • Ichiba, A., et al. 2018. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 22 (1), 331–350. doi:10.5194/hess-22-331-2018
  • Lovejoy, S. and Schertzer, D., 1990. Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. Journal of Geophysical Research, 95 (D3), 2021–2034. doi:10.1029/JD095iD03p02021
  • Luo, P., et al. 2018. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports, 8 (1), 1–11. doi:10.1038/s41598-018-30024-5
  • Macedo, M.B., Do Lago, C.A.F., and Mendiondo, E.M., 2019. Stormwater volume reduction and water quality improvement by bioretention: potentials and challenges for water security in a subtropical catchment. Science of Total Environment, 647, 923–931. doi:10.1016/j.scitotenv.2018.08.002
  • Maksimovi, Č., Kurian, M., and Ardakanian, R., 2015. Rethinking infrastructure design for multi-use water services. Germany: Springer International Publishing.
  • Moriasi, D.N., et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Ochoa-Rodriguez, S., et al. 2015. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: a multi-catchment investigation. Journal of Hydrology, 531, 389–407. doi:10.1016/j.jhydrol.2015.05.035
  • Qin, H.P., Li, Z.X., and Fu, G., 2013. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577–585. doi:10.1016/j.jenvman.2013.08.026
  • Qiu, Y., et al. 2021. Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France). Hydrology and Earth System Sciences, 25 (6), 3137–3162. doi:10.5194/hess-25-3137-2021
  • Royer, J.F., et al. 2008. Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. Comptes Rendus - Geoscience, 340 (7), 431–440. doi:10.1016/j.crte.2008.05.002
  • Schertzer, D., et al. 2010. No monsters no miracles in nonlinear sciences hydrology is not an outlier. Hydrological Sciences Journal, 55 (6), 965–979. doi:10.1080/02626667.2010.505173
  • Schertzer, D. and Lovejoy, S., 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling mutiplicative processes. Journal of Geophysical Research, 92 (D8), 9693–9714. doi:10.1029/JD092iD08p09693
  • Schertzer, D. and Lovejoy, S., 1997. Universal multifractals do exist!: comments on ‘a statistical analysis of mesoscale rainfall as a random Cascade’. Journal of Applied Meteorology, 36 (9), 1296–1303. doi:10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2
  • Schertzer, D. and Lovejoy, S., 2011. Multifractals, generalized scale invariance and complexity in geophysics. International Journal of Bifurcation and Chaos, 21 (12), 3417–3456. doi:10.1142/S0218127411030647
  • Schertzer, D., Lovejoy, S., and Lavallée, D., 1993. Generic multifractal phase transitions and self-organized criticality. In: J.M. Perdang and A. Lejeune, eds. Cellular Automata: Prospects in Astronomy and Astrophysics. Belgium: Han-sur-Lesse, 216–227.
  • Sun, Y., et al. 2014. Hydrological simulation approaches for BMPs and LID practices in highly urbanized area and development of hydrological performance indicator system. Water Science and Engineering, 7 (2), 143–154. doi:10.3882/j.1674-2370.2014.02.003
  • Tchiguirinskaia, I., et al. 2011. Multifractal study of three storms with different dynamics over the Paris region. 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
  • Velleux, M.L., England, J.F., and Julien, P.Y., 2008. TREX: spatially distributed model to assess watershed contaminant transport and fate. Science of the Total Environment, 404 (1), 113–128. doi:10.1016/j.scitotenv.2008.05.053
  • Versini, P.A., et al. 2015. Assessment of the hydrological impacts of green roof: from building scale to basin scale. Journal of Hydrology, 524, 562–575. doi:10.1016/j.jhydrol.2015.03.020
  • Wheater, H.S., Bell, N.C., and Johnston, P.M., 1989. Evaluation of overland flow models using laboratory catchment data III Comparison of conceptual models. Hydrological Sciences Journal, 34 (3), 319–337. doi:10.1080/02626668909491337
  • Zahmatkesh, Z., et al. 2015. Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City. Journal of Irrigation and Drainage Engineering, 141 (1), 04014043. doi:10.1061/(ASCE)IR.1943-4774.0000770
  • Zhang, D., et al. 2020. A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environmental Impact Assessment Review, 83, 106397. doi:10.1016/j.eiar.2020.106397

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.