398
Views
9
CrossRef citations to date
0
Altmetric
Research Article

A novel hybrid approach to flood susceptibility assessment based on machine learning and land use change. Case study: a river watershed in Vietnam

, , , , , , , , & show all
Pages 1065-1083 | Received 14 Apr 2021, Accepted 25 Feb 2022, Published online: 16 May 2022

References

  • Anguita, D., et al., 2010. Model selection for support vector machines: advantages and disadvantages of the machine learning theory. In: The 2010 international joint conference on neural networks (IJCNN), Barcelona, Spain, 1–8.
  • Arora, A., et al., 2020. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment, 750, 141565. doi:10.1016/j.scitotenv.2020.141565
  • Arora, A., et al., 2021. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment, 750, 141565. doi:10.1016/j.scitotenv.2020.141565123
  • Azareh, A., et al., 2019. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto International, 36, 1–21.
  • Band, S.S., et al. 2020. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sensing, 12 (21), 3568. doi:10.3390/rs12213568
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324
  • Bui, D., et al. 2018. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sensing, 10, 1538.
  • Bui, D.T., et al., 2019a. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena, 179, 184–196. doi:10.1016/j.catena.2019.04.009
  • Bui, Q.-T., 2019b. Metaheuristic algorithms in optimizing neural network: a comparative study for forest fire susceptibility mapping in Dak Nong, Vietnam. Geomatics, Natural Hazards and Risk, 10 (1), 136–150. doi:10.1080/19475705.2018.1509902
  • Bui, Q.-T., et al., 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 581, 124379. doi:10.1016/j.jhydrol.2019.124379
  • Chen, W., et al., 2019a. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864–873. doi:10.1016/j.jhydrol.2019.05.089
  • Chen, W., et al., 2019b. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Science of the Total Environment, 684, 31–49. doi:10.1016/j.scitotenv.2019.05.312
  • Chin, V.J. and Salam, Z., 2019. Coyote optimization algorithm for the parameter extraction of photovoltaic cells. Solar Energy, 194, 656–670. doi:10.1016/j.solener.2019.10.093
  • Choubin, B., et al., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. doi:10.1016/j.scitotenv.2018.10.064
  • Clerc, M., 2010. Particle swarm optimization. London, UK: John Wiley & Sons.
  • Conner, M.M., Ebinger, M.R., and Knowlton, F.F., 2008. Evaluating coyote management strategies using a spatially explicit, individual-based, socially structured population model. Ecological Modelling, 219 (1–2), 234–247. doi:10.1016/j.ecolmodel.2008.09.008
  • Costache, R., et al. 2020a. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12 (1), 106. doi:10.3390/rs12010106
  • Costache, R., et al. 2020b. New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrological Sciences Journal, 65 (16), 2816–2837. doi:10.1080/02626667.2020.1842412
  • Costache, R. and Bui, D.T., 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Science of the Total Environment, 712, 136492. doi:10.1016/j.scitotenv.2019.136492
  • Darabi, H., et al., 2019. Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. doi:10.1016/j.jhydrol.2018.12.002
  • Dawod, G.M., Mirza, M.N., and Al-ghamdi, K.A., 2012. GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environmental Earth Sciences, 67 (8), 2205–2215. doi:10.1007/s12665-012-1660-9
  • de Souza, R. C. T., et al., 2020. Binary coyote optimization algorithm for feature selection. Pattern Recognition, 107, 107470. doi:10.1016/j.patcog.2020.107470
  • Demir, B. and Erturk, S., 2007. Hyperspectral image classification using relevance vector machines. IEEE Geoscience and Remote Sensing Letters, 4 (4), 586–590. doi:10.1109/LGRS.2007.903069
  • Di, B., et al. 2019. Assessing susceptibility of debris flow in southwest China using gradient boosting machine. Scientific Reports, 9 (1), 1–12. doi:10.1038/s41598-019-48986-5
  • Diab, A.A.Z., et al., 2020. Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access, 8, 111102–111140. doi:10.1109/ACCESS.2020.3000770
  • Dodangeh, E., et al., 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of the Total Environment, 705, 135983. doi:10.1016/j.scitotenv.2019.135983
  • Dutta, D. and Herath, S., 2004. Trend of floods in Asia and flood risk management with integrated river basin approach. In: Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Suntec City, Singapore, 55–63.
  • El-haddad, B.A., et al. 2021. Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Natural Hazards, 105 (1), 83–114. doi:10.1007/s11069-020-04296-y
  • Falah, F., et al., 2019. Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In: Spatial modeling in GIS and R for Earth and Environmental Sciences, Amsterdam, Netherlands. Elsevier, 323–336.
  • Feizizadeh, B., et al. 2017. Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arabian Journal of Geosciences, 10 (5), 1–13. doi:10.1007/s12517-017-2918-z
  • Fenicia, F., et al., 2008. Understanding catchment behavior through stepwise model concept improvement. Water Resources Research, 44 (1). doi:10.1029/2006WR005563
  • Figueiredo, R., Romão, X., and Paupério, E., 2020. Flood risk assessment of cultural heritage at large spatial scales: framework and application to mainland Portugal. Journal of Cultural Heritage, 43, 163–174. doi:10.1016/j.culher.2019.11.007
  • Francesch-huidobro, M., et al., 2017. Governance challenges of flood-prone delta cities: integrating flood risk management and climate change in spatial planning. Progress in Planning, 114, 1–27. doi:10.1016/j.progress.2015.11.001
  • Freund, Y. and Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119–139. doi:10.1006/jcss.1997.1504
  • Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29 (5), 1189–1232.
  • Gayathri, B. and Sumathi, C., 2016. Comparative study of relevance vector machine with various machine learning techniques used for detecting breast cancer. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), United States, 1–5.
  • Handayani, W., et al. 2020. Urbanization and increasing flood risk in the Northern Coast of Central Java—Indonesia: an assessment towards better land use policy and flood management. Land, 9 (10), 343. doi:10.3390/land9100343
  • Heddam, S., Ptak, M., and Zhu, S., 2020. Modelling of daily lake surface water temperature from air temperature: Extremely Randomized Trees (ERT) versus Air2Water, Mars, M5Tree, RF and MLPNN. Journal of Hydrology, 588, 125130. doi:10.1016/j.jhydrol.2020.125130
  • Hong, H. et al., 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. The Science of the Total Environment, 630, 1044–1056. doi:10.1016/j.scitotenv.2018.02.278
  • Hosseini, F.S., et al., 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Science of the Total Environment, 711, 135161. doi:10.1016/j.scitotenv.2019.135161
  • Huynh, X.-P., Park, S.-M., and Kim, Y.-G., 2016. Detection of driver drowsiness using 3D deep neural network and semi-supervised gradient boosting machine. In: Asian Conference on Computer Vision, Taipei, Taiwan, 134–145.
  • Jacob, X.K., et al. 2020. Hydrodynamic modeling for flood hazard assessment in a data scarce region: a case study of Bharathapuzha River Basin. Environmental Modeling & Assessment, 25 (1), 97–114. doi:10.1007/s10666-019-09664-y
  • Janizadeh, S., et al. 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability, 11 (19), 5426. doi:10.3390/su11195426
  • Jhong, B.-C., et al. 2020. A generalized framework for assessing flood risk and suitable strategies under various vulnerability and adaptation scenarios: a case study for residents of Kyoto city in Japan. Water, 12 (9), 2508. doi:10.3390/w12092508
  • John, V., et al., 2018. Free space, visible and missing lane marker estimation using the PsiNet and extra trees regression. In: 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 189–194.
  • Kadavi, P.R., LEE, C.-W., and LEE, S., 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sensing, 10 (8), 1252. doi:10.3390/rs10081252
  • Kalantari, Z., et al., 2014. A method for mapping flood hazard along roads. Journal of Environmental Management, 133, 69–77. doi:10.1016/j.jenvman.2013.11.032
  • Khosravi, K., et al., 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323. doi:10.1016/j.jhydrol.2019.03.073
  • Kuntla, S.K., Sree, M., and Viswanadham, M., 2019. Sentinel-1 SAR data preparation for extraction of flood footprints- a case study. Disaster Advances, 12, 10–20.
  • Li, K., et al. 2012. Flood loss analysis and quantitative risk assessment in China. Natural Hazards, 63 (2), 737–760. doi:10.1007/s11069-012-0180-y
  • Liao, H.-W. and Zhou, D.-L., 2012. Review of AdaBoost and its improvement. Jisuanji Xitong Yingyong- Computer Systems and Applications, 21 (5), 240–244.
  • Liu, Y., 2014. Random forest algorithm in big data environment. Computer Modelling & New Technologies, 18 (12A), 147–151.
  • Luu, C., et al., 2015. A proposed flood risk assessment method for Central Vietnam. In: 5th International Conference on Building Resilience, Newcastle City Hall, Australia.
  • Luu, C., et al., 2021. GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. Journal of Hydrology, 599, 126500. doi:10.1016/j.jhydrol.2021.126500
  • Luu, C. and Von Meding, J., 2018. A flood risk assessment of Quang Nam, Vietnam using spatial multicriteria decision analysis. Water, 10 (4), 461. doi:10.3390/w10040461
  • Malekinezhad, H., et al., 2021. Application of entropy weighting method for urban flood hazard mapping. Acta Geophysica, 69, 1–14.
  • Mallick, J., et al. 2021. Risk assessment of resources exposed to rainfall induced landslide with the development of GIS and RS based ensemble metaheuristic machine learning algorithms. Sustainability, 13 (2), 457. doi:10.3390/su13020457
  • Marchand, M., et al. 2009. Damage and casualties modelling as part of a vulnerability assessment for tsunami hazards: a case study from Aceh, Indonesia. Journal of Flood Risk Management, 2 (2), 120–131. doi:10.1111/j.1753-318X.2009.01027.x
  • Matsumoto, M. and Hori, J., 2014. Classification of silent speech using support vector machine and relevance vector machine. Applied Soft Computing, 20, 95–102. doi:10.1016/j.asoc.2013.10.023
  • Mehrabi, M., et al. 2020. Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors, 20 (6), 1723. doi:10.3390/s20061723
  • Metin, A.D., et al. 2020. The role of spatial dependence for large-scale flood risk estimation. Natural Hazards and Earth System Sciences, 20 (4), 967–979. doi:10.5194/nhess-20-967-2020
  • Mianji, F.A. and Zhang, Y., 2011. Robust hyperspectral classification using relevance vector machine. IEEE Transactions on Geoscience and Remote Sensing, 49 (6), 2100–2112. doi:10.1109/TGRS.2010.2103381
  • Mind’je, R., et al., 2019. Flood susceptibility modeling and hazard perception in Rwanda. International Journal of Disaster Risk Reduction, 38, 101211. doi:10.1016/j.ijdrr.2019.101211
  • Ming, X., et al. 2020. Real‐time flood forecasting based on a high‐performance 2‐D hydrodynamic model and numerical weather predictions. Water Resources Research, 56. doi:10.1029/2019WR025583.
  • Mirjalili, S., Mirjalili, S.M., and Lewis, A., 2014. Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007
  • Moayedi, H., et al. 2019. Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide. Geomatics, Natural Hazards and Risk, 10 (1), 1879–1911. doi:10.1080/19475705.2019.1650126
  • Moore, I.D., Grayson, R., and Ladson, A., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5 (1), 3–30. doi:10.1002/hyp.3360050103
  • Mosavi, A., et al., 2020. Ensemble models of GLM, FDA, Mars, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto International, 1–20. doi:10.1080/10106049.2020.1829101
  • Nachappa, T.G., et al., 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, 590, 125275. doi:10.1016/j.jhydrol.2020.125275
  • Naghibi, S.A., Ahmadi, K., and Daneshi, A., 2017. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31 (9), 2761–2775. doi:10.1007/s11269-017-1660-3
  • Nguyen, H.-D., et al. 2020a. An optimal search for neural network parameters using the Salp swarm optimization algorithm: a landslide application. Remote Sensing Letters, 11 (4), 353–362. doi:10.1080/2150704X.2020.1716409
  • Nguyen, P.T., et al. 2020b. Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: the DakNong province case-study, Vietnam. International Journal of Environmental Research and Public Health, 17 (7), 2473. doi:10.3390/ijerph17072473
  • Nguyen, V.D., et al. 2020c. Biases in national and continental flood risk assessments by ignoring spatial dependence. Scientific Reports, 10 (1), 1–8. doi:10.1038/s41598-020-76523-2
  • Nguyen, H.D., et al. 2021a. Predicting future urban flood risk using land change and hydraulic modeling in a river watershed in the central Province of Vietnam. Remote Sensing, 13 (2), 262. doi:10.3390/rs13020262
  • Nguyen, T.G., et al., 2021b. Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: a case study in Vietnam’s Mekong Delta. Geoderma Regional, 27, e00424. doi:10.1016/j.geodrs.2021.e00424
  • Nguyen, H., Ardillier-carras, F., and Touchart, L., 2018. Les paysages de rizières et leur évolution récente dans le delta du fleuve Gianh. Cybergeo. doi:10.4000/cybergeo.29826
  • Nirupama, N. and Simonovic, S.P., 2007. Increase of flood risk due to urbanisation: a Canadian example. Natural Hazards, 40 (1), 25. doi:10.1007/s11069-006-0003-0
  • O’Donnell, E.C. and Thorne, C.R., 2020. Drivers of future urban flood risk. Philosophical Transactions of the Royal Society A, 378 (2168), 20190216. doi:10.1098/rsta.2019.0216
  • Olinsky, A., Kennedy, K., and Brayton Kennedy, B., 2014. Assessing gradient boosting in the reduction of misclassification error in the prediction of success for actuarial majors. Case Studies In Business, Industry And Government Statistics, 5 (1), 12–16.
  • Petrişor, A.-I., et al. 2020. Degradation of coastlines under the pressure of urbanization and tourism: evidence on the change of land systems from Europe, Asia and Africa. Land, 9 (8), 275. doi:10.3390/land9080275
  • Petrişor, A.-I., Ianoş, I., and Tălângă, C., 2010. Land cover and use changes focused on the urbanization processes in Romania. Environmental Engineering & Management Journal (EEMJ), 9 (6), 765–771.
  • Pham, B.T., et al., 2019. Hybrid computational intelligence models for groundwater potential mapping. Catena, 182, 104101. doi:10.1016/j.catena.2019.104101
  • Pham, B.T., et al., 2020a. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology, 592, 125815.
  • Pham, B.T., et al. 2020b. A comparative study of Kernel logistic regression, radial basis function classifier, multinomial Naïve Bayes, and logistic model tree for flash flood susceptibility mapping. Water, 12 (1), 239. doi:10.3390/w12010239
  • Pham, B.T., et al., 2021. Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? Journal of Hydrology, 592, 125615. doi:10.1016/j.jhydrol.2020.125615
  • Pierezan, J. and Coelho, L.D.S., 2018. Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC), Rio de Janeiro, Brazil, 1–8.
  • Pradhan, B. and Youssef, D.A., 2011. A 100‐year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management, 4, 189–202. doi:10.1111/j.1753-318X.2011.01103.x
  • Psomiadis, E., et al. 2021. Potential dam breach analysis and flood wave risk assessment using HEC-RAS and remote sensing data: a multicriteria approach. Water, 13 (3), 364. doi:10.3390/w13030364
  • Razavi-termeh, S.V., et al. 2020. Improving groundwater potential mapping using metaheuristic approaches. Hydrological Sciences Journal, 65 (16), 2729–2749. doi:10.1080/02626667.2020.1828589
  • Robi, M.A., Abebe, A., and Pingale, S.M., 2019. Flood hazard mapping under a climate change scenario in a Ribb catchment of Blue Nile River basin, Ethiopia. Applied Geomatics, 11 (2), 147–160. doi:10.1007/s12518-018-0249-8
  • Sajedi Hosseini, F., et al., 2021. Towards a flood vulnerability assessment of watershed using integration of decision making trial and evaluation laboratory, analytical network process, and fuzzy theories. Environmental Science and Pollution Research, 28, 62487–62498. doi:10.1007/s11356-020-11319-5.
  • Santangelo, N., et al. 2011. Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (Southern Italy). Natural Hazards and Earth System Sciences, 11 (10), 2765–2780. doi:10.5194/nhess-11-2765-2011
  • Santos, P.P., Tavares, A., and Andrade, A., 2011. Comparing historical-hydrogeomorphological reconstitution and hydrological-hydraulic modelling in the estimation of flood-prone areas–a case study in Central Portugal. Natural Hazards and Earth System Sciences, 11 (6), 1669–1681. doi:10.5194/nhess-11-1669-2011
  • Savage, N., et al. 2012. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development Discussions, 5, 3131–3182.
  • Sayed, G.I., Khoriba, G., and Haggag, M.H., 2020. The novel multi-swarm coyote optimization algorithm for automatic skin lesion segmentation. Evolutionary Intelligence, 1–33.
  • Schumann, G., et al. 2008. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (3), 283–296. doi:10.1016/j.isprsjprs.2007.09.004
  • Shahabi, H., et al. 2020. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sensing, 12 (2), 266. doi:10.3390/rs12020266
  • Sultana, Z., et al. 2018. Assessment of business interruption of flood-affected companies using random forests. Water, 10 (8), 1049. doi:10.3390/w10081049
  • Suresh, S. and Lal, S., 2020. A metaheuristic framework based automated Spatial-Spectral graph for land cover classification from multispectral and hyperspectral satellite images. Infrared Physics & Technology, 105, 103172. doi:10.1016/j.infrared.2019.103172
  • Tang, X., et al., 2020a. Flood susceptibility assessment based on a novel random Naïve Bayes method: a comparison between different factor discretization methods. Catena, 190, 104536. doi:10.1016/j.catena.2020.104536
  • Tang, X., et al., 2020b. A novel optimized repeatedly random undersampling for selecting negative samples: a case study in an SVM-based forest fire susceptibility assessment. Journal of Environmental Management, 271, 111014. doi:10.1016/j.jenvman.2020.111014
  • Tehrany, M.S. and Kumar, L., 2018. The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 77 (13), 490. doi:10.1007/s12665-018-7667-0
  • Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. doi:10.1016/j.jhydrol.2014.03.008
  • Tian, Z. and Fong, S., 2016. Survey of meta-heuristic algorithms for deep learning training. In: O. Baskan, ed. Optimization Algorithms—methods and Applications. London, England: InTech.
  • Tien Bui, D., et al., 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317–330. doi:10.1016/j.jhydrol.2016.06.027
  • Tipping, M.E., 2000. The relevance vector machine. In: S. A. Solla, T. K. Leen, and K.-R. M¨uller eds. Advances in neural information processing systems 12. Cambridge, MA: MIT Press, 652–658.
  • Vapnik, V., 2013. The nature of statistical learning theory. New York: Springer Science & Business Media.
  • Vojtek, M., et al. 2021. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomatics, Natural Hazards and Risk, 12 (1), 1153–1180. doi:10.1080/19475705.2021.1912835
  • Vojtek, M. and Vojteková, J., 2018. Flood maps and their potential role in local spatial planning: a case study from Slovakia. Water Policy, 20 (5), 1042–1058. doi:10.2166/wp.2018.077
  • Waghwala, R.K. and Agnihotri, P., 2019. Flood risk assessment and resilience strategies for flood risk management: a case study of Surat City. International Journal of Disaster Risk Reduction, 40, 101155. doi:10.1016/j.ijdrr.2019.101155
  • Xia, B., et al., 2015. PETs: a stable and accurate redictor of protein-protein interacting sites based on xtremely-randomized ree. IEEE Transactions on NanoBioscience, 14, 1-1. doi:10.1109/TNB.2015.2491303
  • Yates, D.N., Warner, T.T., and Leavesley, G.H., 2000. Prediction of a flash flood in complex terrain. Part II: a comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system. Journal of Applied Meteorology, 39 (6), 815–825. doi:10.1175/1520-0450(2000)039<0815:POAFFI>2.0.CO;2
  • Yuan, Z., et al., 2020. Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model. Energy Reports, 6, 1106–1117. doi:10.1016/j.egyr.2020.04.032
  • Zaninetti, J.-M., Ngo, A.-T., and Grivel, S., 2015. La construction sociale de la vulnérabilité face au risque d’inondation au Viêt Nam. Mappemonde, 114, 17.
  • Zhang, W., et al. 2020. Assessment of flood inundation by coupled 1D/2D hydrodynamic modeling: a case study in mountainous watersheds along the coast of Southeast China. Water, 12 (3), 822. doi:10.3390/w12030822

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.