216
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Combined predictive and descriptive tests for extreme rainfall probability distribution selection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1130-1140 | Received 10 Sep 2021, Accepted 28 Feb 2022, Published online: 05 May 2022

References

  • Alam, M.A., et al., 2018. Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh. Climate, 6 (1), 9. doi:10.3390/cli6010009
  • Baratti, E., et al., 2012. Estimating the flood frequency distribution at seasonal and annual time scales. Hydrology and Earth System Sciences, 16 (12), 4651–4660. doi:10.5194/hess-16-4651-2012
  • Beskow, S., et al., 2015. Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies, 4 (PB), 123–133, Elsevier B.V. doi:10.1016/j.ejrh.2015.06.007.
  • Blain, G.C., 2014. Revisiting the critical values of the Lilliefors test: towards the correct agrometeorological use of the Kolmogorov-Smirnov framework. Bragantia, 73 (2), 192–202. doi:10.1590/brag.2014.015
  • Cheng, L., et al., 2014. Non-stationary extreme value analysis in a changing climate. Climate Change, 127 (2), 353–369. doi:10.1007/s10584-014-1254-5
  • Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20 (1), 37–46. doi:10.1177/001316446002000104
  • DAEE, 2020. Departamento de Águas e Energia Eletrica de São Paulo. Available from: http://www.hidrologia.daee.sp.gov.br/ [ Accessed 5 Jan 2020]
  • Efron, B. and Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1 (1), 54–77.
  • Gaume, E., 2018. Flood frequency analysis: the Bayesian choice. Wiley Interdisciplinary Review of Water, 5 (4), e1290. doi:10.1002/wat2.1290
  • Haktanir, T., Cobaner, M., and Gorkemli, B., 2013. Assessment of right-tail prediction ability of some distributions by monte carlo analyses. Journal of Hydrologic Engineering, 18 (5), 499–517. doi:10.1061/(ASCE)HE.1943-5584.0000620
  • Hosking, J.R.M., 1990. L-moments: analysis and estimation of distributions using linear combination of order statistics. Ournal of the Royal Statistical Society, 52 (1), 105–124. doi:10.1111/j.2517-6161.1990.tb01775.x
  • Hosking, J.R.M. and Wallis, J.R., 1997. Regional frequency analysis. Reg. Freq. Anal. - An apporach based L-Moments. Cambridge, United Kingdom: Cambrige University Press.
  • Jackson, E.K., et al. 2019. Introductory overview: error metrics for hydrologic modelling – a review of common practices and an open source library to facilitate use and adoption. Environmental Modelling in Software, 119 (May), 32–48. Elsevier. doi:10.1016/j.envsoft.2019.05.001.
  • Jenkinson, A.F., 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81 (348), 158–171. doi:10.1002/qj.49708134804
  • Kao, S.C. and Govindaraju, R.S., 2007. A bivariate frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research and Atmospher, 112, D13119. doi:10.1029/2007JD008522
  • Katz, R.W., Parlange, M.B., and Naveau, P., 2002. Statistics of extremes in hydrology. Advances in Water Resources, 25 (8–12), 1287–1304. doi:10.1016/S0309-1708(02)00056-8
  • Koutsoyiannis, D., 2008. Probability and statistics for geophysical processes. Athens, Greece: National Technical University of Athens. doi:10.13140/RG.2.1.2300.1849/1
  • Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005
  • Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance. Unknown. Journal of the American Statistical Association, 62 (318), 399–402. doi:10.1080/01621459.1967.10482916
  • Lima, A.O., et al. 2021. Extreme rainfall events over Rio de Janeiro State, Brazil: characterization using probability distribution functions and clustering analysis. Atmospheric Research, 247 ( March 2020), 105221. Elsevier. doi:10.1016/j.atmosres.2020.105221.
  • Liu, Y.R., et al., September 2020. Development of a Bayesian-copula-based frequency analysis method for hydrological risk assessment – the Naryn River in Central Asia. Journal of Hydrology, 580. doi:10.1016/j.jhydrol.2019.124349.
  • Luke, A., et al., 2017. Predicting nonstationary flood frequencies: evidence supports an updated stationarity thesis in the United States. Water Resources Research, 53 (7), 5469–5494. doi:10.1002/2016WR019676
  • Marani, M. and Ignaccolo, M., 2015. A metastatistical approach to rainfall extremes. Advances in Water Resources, 79, 121–126. Elsevier Ltd. doi:10.1016/j.advwatres.2015.03.001
  • Martins, E.S. and Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators foy hydrologic data. Water Resources Research, 36 (3), 737–744. doi:10.1029/1999WR900330
  • Miniussi, A., Marani, M., and Villarini, G. 2020. Metastatistical extreme value distribution applied to floods across the continental United States. Advances in Water Resources, 136 ( December 2019), 103498. Elsevier Ltd. doi:10.1016/j.advwatres.2019.103498.
  • Montanari, A. and Koutsoyiannis, D., 2014. Modeling and mitigating natural hazards: stationarity is immortal! Water Resources Research, 50 (12), 9748–9756. doi:10.1002/2014WR016092
  • Naghettini, M. and Pinto, E.J.A., 2007. Hidrologia Estatística. Belo Horizonte, Brazil: CPRM - Serviço Geológico do Brasil.
  • Nguyen, T.H. and Nguyen, V.T.V., 2019. Decision-support tool for constructing robust rainfall IDF relations in consideration of model uncertainty. Journal of Hydrologic Engineering, 24 (7), 1–10. doi:10.1061/(ASCE)HE.1943-5584.0001802
  • Nguyen, T.H., et al., 2017. A systematic approach to selecting the best probability models for annual maximum rainfalls – a case study using data in Ontario (Canada). Journal of Hydrology, 553, 49–58. doi:10.1016/j.jhydrol.2017.07.052
  • Nguyen, V.T.V. and Nguyen, T.H., 2016. Statistical modeling of extreme rainfall processes (SMExRain): a decision support tool for extreme rainfall frequency analyses. Procedia Engineering, 154, 624–630. doi:10.1016/j.proeng.2016.07.561
  • Okoli, K., et al., 2018. Model averaging versus model selection: estimating design floods with uncertain river flow data. Hydrological Sciences Journal, 63 (13–14), 1913–1926. Taylor & Francis. doi:10.1080/02626667.2018.1546389.
  • Okoli, K., et al., 2019. A systematic comparison of statistical and hydrological methods for design flood estimation. Hydrological Research, 1–14. doi:10.2166/nh.2019.188
  • Ozonur, D., Pobocikova, I., and Souza, A., 2021. Statistical analysis of monthly rainfall in Central West Brazil using probability distributions. Modeling Earth Systems and Environment, 7 (3), 1979–1989. doi:10.1007/s40808-020-00954-z
  • Öztekin, T., 2007. Wakeby distribution for representing annual extreme and partial duration rainfall series. Meteorological Applications, 14 (4), 381–387. doi:10.1002/met.37
  • Papalexiou, S.M., 2018. Unified theory for stochastic modelling of hydroclimatic processes: preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234–252. Elsevier Ltd. doi:10.1016/j.advwatres.2018.02.013
  • Papalexiou, S.M. and Koutsoyiannis, D., 2013. Battle of extreme value distributions: a global survey on extreme daily rainfall. Water Resources Research, 49 (1), 187–201. doi:10.1029/2012WR012557
  • Papalexiou, S.M. and Koutsoyiannis, D., 2016. A global survey on the seasonal variation of the marginal distribution of daily precipitation. Advances in Water Resources, 94, 131–145. Elsevier Ltd. doi:10.1016/j.advwatres.2016.05.005
  • Papalexiou, S.M., Koutsoyiannis, D., and Makropoulos, C., 2013. How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17 (2), 851–862. doi:10.5194/hess-17-851-2013
  • Salinas, J.L., et al., 2014a. Regional parent flood frequency distributions in Europe - Part 2: climate and scale controls. Hydrology and Earth System Sciences, 18 (11), 4391–4401. doi:10.5194/hess-18-4391-2014
  • Salinas, J.L., et al., 2014b. Regional parent flood frequency distributions in Europe - Part 1: is the GEV model suitable as a pan-European parent? Hydrology and Earth System Sciences, 18 (11), 4381–4389. doi:10.5194/hess-18-4381-2014
  • Sangal, B.P. and Biswas, A.K., 1970. The 3‐parameter lognormal distribution and its applications in hydrology. Water Resources Research, 6 (2), 505–515. doi:10.1029/WR006i002p00505
  • Shin, H., et al., 2012. Assessment of modified Anderson-Darling test statistics for the generalized extreme value and generalized logistic distributions. Stochastic Environmental Research and Risk Assessment, 26 (1), 105–114. doi:10.1007/s00477-011-0463-y
  • Slater, L.J. and Villarini, G., 2016. Recent trends in U.S. flood risk. Geophysical Research Letters, 1–9. doi:10.1002/2016GL071199
  • Steinskog, D.J., Tjøtheim, D.B., and Kvamstø, N.G., 2007. A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Monthly Weather Review, 135 (3), 1151–1157. doi:10.1175/MWR3326.1
  • Steirou, E., et al., 2019. Climate influences on flood probabilities across Europe. Hydrology and Earth System Sciences, 23 (3), 1305–1322. doi:10.5194/hess-23-1305-2019
  • Volpi, E., 2019. On return period and probability of failure in hydrology. WIREs Water, 6 (3), e1340. doi:10.1002/wat2.1340
  • Ye, L., et al., 2018. The probability distribution of daily precipitation at the point and catchment scales in the United States. Hydrology and Earth System Sciences, 22 (12), 6519–6531. doi:10.5194/hess-22-6519-2018
  • Zaghloul, M., et al., 2020. Revisiting flood peak distributions: a pan-Canadian investigation. Advances in Water Resources, 145 (August), 103720, Elsevier Ltd. doi:10.1016/j.advwatres.2020.103720.
  • Zorzetto, E., Botter, G., and Marani, M., 2016. On the emergence of rainfall extremes from ordinary events. Geophysical Research Letters, 43 (15), 8076–8082. doi:10.1002/2016GL069445

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.