254
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of forest fires on headwater streamflow and the habitat suitability for benthic macroinvertebrates

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 1356-1371 | Received 18 May 2021, Accepted 26 Apr 2022, Published online: 20 Jun 2022

References

  • Allen, R.G., et al., 1998. FAO irrigation and drainage paper crop by. Irrigation and Drainage, 300 (56), 300: http://www.climasouth.eu/sites/default/files/FAO%2056.pdf
  • Bart, R.R., 2016. A regional estimate of postfire streamflow change in California. Water Resources Research, 52 (2), 1465–1478. Blackwell Publishing Ltd. doi:10.1002/2014WR016553
  • Batelis, S.C. and Nalbantis, I., 2014. Potential effects of forest fires on streamflow in the Enipeas river Basin, Thessaly, Greece. Environmental Processes, 1 (1), 73–85. Springer Basel. doi:10.1007/s40710-014-0004-z
  • Bêche, L.A., Stephens, S.L., and Resh, V.H., 2005. Effects of prescribed fire on a Sierra Nevada (California, USA) stream and its riparian zone. Forest Ecology and Management, 218 (1–3), 37–59. Elsevier. doi:10.1016/j.foreco.2005.06.010
  • Belmar, O., Velasco, J., and Martinez-Capel, F., 2011. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River basin (Spain). Environmental Management, 47, 992–1004. doi:10.1007/s00267-011-9661-0
  • Bixby, R.J., et al., 2015. Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Science, 34 (4), 1340–1350. University of Chicago Press. doi:10.1086/684073
  • Boavida, I. et al., 2012. Benchmarking River Habitat Improvement. River Research and Applications, 28, 1768–1779. doi:10.1002/rra.1561
  • Broekhoven, E., et al., 2006. Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecological Modelling, 198 (1–2), 71–84. Elsevier. doi:10.1016/j.ecolmodel.2006.04.006
  • Bunn, S.E. and Arthington, A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30 (4), 492–507. doi:10.1007/s00267-002-2737-0
  • Carlisle, D.M. et al., 2010. Predicting the natural flow regime: models for assessing hydrological alteration in streams. River Research and Applications, 26, 118–136. doi:10.1002/rra.1247
  • Castro-Català, N., et al., 2020. Unravelling the effects of multiple stressors on diatom and macroinvertebrate communities in European river basins using structural and functional approaches. Science of the Total Environment. 742, 140543. Elsevier B.V. doi:10.1016/j.scitotenv.2020.140543.
  • Chen, W. et al., 2013. Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. Int J Disaster Risk Sci, 4, 169–181. doi:10.1007/s13753-013-0018-6
  • Chow, V.T., 1959. Open Channel Hydraulics. New York, USA: McGraw-Hill.
  • Debano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231-232, 195–206. Elsevier Science B.V. doi:10.1016/S0022-1694(00)00194-3
  • Ebel, B.A., 2012. Wildfire impacts on soil-water retention in the Colorado Front Range, United States. Water Resources Research, 48 (12), 1–12. doi:10.1029/2012WR012362
  • European Union Council, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Offic. J. Eur. Commun. L327, 1–72. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0060
  • Fernandes, E.H., Dyer, K.R., and Niencheski, L.F.H., 2001. Calibration and Validation of the TELEMAC-2D to the Patos Lagoon (Brazil). Journal of Coastal Research, 2, 470–488. International Coastal Symposium (ICS 2000): CHALLENGES FOR THE 21ST CENTURY IN COASTAL SCIENCES, ENGINEERING AND ENVIRONMENT (August 2001).
  • Fritz, K.M. and Dodds, W.K., 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia, 527 (1), 99–112. Springer. doi:10.1023/B:HYDR.0000043188.53497.9b
  • Gillenwater, D., Granata, T., and Ulrike, Z., 2006. GIS-Based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecological Engineering, 28, 311–323.
  • Gonino, G., et al., 2019. Short-term effects of wildfire ash exposure on behaviour and hepatosomatic condition of a potamodromous cyprinid fish, the Iberian barbel Luciobarbus bocagei (Steindachner, 1864). Science of the Total Environment, 665, 226–234. Elsevier B.V. doi:10.1016/j.scitotenv.2019.02.108
  • Hallema, D.W., et al., 2017. Regional patterns of postwildfire streamflow response in the Western United States: the importance of scale-specific connectivity. Hydrological Processes, 31 (14), 2582–2598. John Wiley and Sons Ltd. doi:10.1002/hyp.11208
  • Havel, A., Tasdighi, A., and Arabi, M., 2018. Assessing the hydrologic response to wildfiresin mountainous regions. Hydrology and Earth System Sciences, 22 (4), 2527–2550. Copernicus GmbH. doi:10.5194/hess-22-2527-2018
  • Hervouet, J.M., 2007. Hydrodynamics of free surface flows: modelling with the finite element method. United Kingdom: John Wiley and Sons. doi:10.1002/9780470319628
  • Holden, Z.A., et al., 2012. Wildfire extent and severity correlated with annual streamflow distribution and timing in the Pacific Northwest, USA (1984-2005). Ecohydrology, 5 (5), 677–684. doi:10.1002/eco.257
  • Leclerc, M., et al., 1995. Two-dimensional hydrodynamic modeling: a neglected tool in the instream flow incremental methodology. Transactions of the American Fisheries Society, 124 (5), 645–662. doi:10.1577/1548-8659(1995)124<0645:TDHMAN>2.3.CO;2
  • Lee, J.H., Kil, J.T., and Jeong, S., 2010. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering, 36 (10), 1251–1259. doi:10.1016/j.ecoleng.2010.05.004
  • Linh, N.T.M., et al., 2018. Application of a two-dimensional model for flooding and floodplain simulation: case study in Tra Khuc-Song Ve river in Viet Nam. International Associates Lowland Technology, 20, IALT. https://cot.unhas.ac.id/journals/index.php/ialt_lti/article/view/548
  • Loiselle, D., et al., 2020. Projecting impacts of wildfire and climate change on streamflow, sediment, and organic carbon yields in a forested watershed. Journal of Hydrology, 590, 125403. Elsevier B.V. doi:10.1016/j.jhydrol.2020.125403
  • Mellon, C.D., Wipfli, M.S., and Li, J.L., 2008. Effects of forest fire on headwater stream macroinvertebrate communities in eastern Washington, U.S.A. Freshwater Biology, 53 (11), 2331–2343. doi:10.1111/j.1365-2427.2008.02039.x
  • Miller, S.W., Wooster, D., and Li, J., 2007. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology, 52 (12), 2494–2510. Blackwell Publishing Ltd. doi:10.1111/j.1365-2427.2007.01850.x
  • Minshall, G.W., Brock, J.T., and Varley, J.D., 1989. Wildfires and Yellowstone’s Stream Ecosystems. Bioscience, 39 (10), 707–715. Oxford University Press (OUP). doi:10.2307/1311002
  • Minshall, G.W., 2003. Responses of stream benthic macroinvertebrates to fire. Forest Ecology and Management, 178 (1–2), 155–161. doi:10.1016/S0378-1127(03)00059-8
  • Monaghan, K.A., et al., 2016. The impact of wildfire on stream fishes in an Atlantic-Mediterranean climate: evidence from an 18-year chronosequence. Knowledge and Management of Aquatic Ecosystems, 2016 (417), 28. EDP Sciences. doi:10.1051/kmae/2016015
  • Moriasi, D.N. et al., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50, 885–900.
  • Munasinghe, D.S.N. et al., 2021. Impacts of streamflow alteration on benthic macroinvertebrates by mini-hydro diversion in Sri Lanka. Scientific Reports -Nature, 11, 546. doi:10.1038/s41598-020-79576-5
  • The Nature Conservancy, 2009. Indicators of Hydrologic Alteration, Version 7.1 User's Manual.
  • Neitsch, S.L., et al. 2011. College of agriculture and life sciences soil and water assessment tool theoretical documentation version 2009.
  • Nolan, K.M. and Shields, R.R., 2000. Measurement of stream discharge by wading. Water-Resources Investigations Report. doi:10.3133/wri20004036
  • Papadaki, C., et al., 2016. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Science of the Total Environment, 540, 418–428. Elsevier B.V. doi:10.1016/j.scitotenv.2015.06.134
  • Papadaki, C., et al., 2017. Evaluation of streamflow habitat relationships using habitat suitability curves and HEC-RAS. European Water, 58 (November), 127–134: http://www.ewra.net/ew/pdf/EW_2017_58_19.pdf
  • Papadaki, C., et al., 2020. Estimation of a suitable range of discharges for the development of instream flow recommendations. Environmental Processes, 7 (3), 703–721. doi:10.1007/s40710-020-00456-1
  • Poon, P.K. and Kinoshita, A.M., 2018. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. Journal of Hydrology, 559, 71–83. Elsevier B.V. doi:10.1016/j.jhydrol.2018.02.023
  • Psomiadis, E., Soulis, K.X., and Efthimiou, N., 2020. Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water (Switzerland), 12 (5). doi:10.3390/W12051386
  • Rehn, A.C., Ode, P.R., and Harrington, J.M., 2011. The effects of wildfire on benthic macroinvertebrates in southern California streams. San Diego Regional Water Quality Control Board under agreement, Rancho Cordova, CA. https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/reglrpts/rb9postfire_tech.pdf
  • Richter, B.D., et al., 1997. How much water does a river need? Freshwater Biology, 37 (1), 231–249. Blackwell Publishing Ltd. doi:10.1046/j.1365-2427.1997.00153.x
  • Rinne, J.N., 1996. Management briefs: short-term effects of wildfire on fishes and aquatic macroinvertebrates in the Southwestern United States. North American Journal of Fisheries Management, 16 (3), 653–658. doi:10.1577/1548-8675(1996)016<0653:MBSTEO>2.3.CO;2
  • Robinne, F.-N., et al., 2020. Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: a scoping review. Journal of Hydrology, 581, 124360. doi:10.1016/j.jhydrol.2019.124360
  • Robinson, C.T., Uehlinger, U., and Monaghan, M.T., 2003. Effects of a multi-year experimental flood regime on macroinvertebrates downstream of a reservoir. Aquatic Sciences, 65, 210–222. doi:10.1007/s00027-003-0663-8
  • Robinson, C.T., Uehlinger, U., and Monaghan, M.T., 2004. Stream ecosystem response to multiple experimental floods from a reservoir. River Research and Applications, 20, 359–377. doi:10.1002/rra.743
  • Rulli, M.C. and Rosso, R., 2007. Hydrologic response of upland catchments to wildfires. Advances in Water Resources, 30 (10), 2072–2086. doi:10.1016/j.advwatres.2006.10.012
  • Ryan, S.E., Dwire, K.A., and Dixon, M.K., 2011. Impacts of wildfire on runoff and sediment loads at Little Granite Creek, western Wyoming. Geomorphology, 129 (1–2), 113–130. doi:10.1016/j.geomorph.2011.01.017
  • Sanford, J.P., 2007. Dam regulations effects on sand bar migration on the Missouri river: southeastern south Dakota. Graduate Student Theses, Dissertations, & Professional Papers. 289. https://scholarworks.umt.edu/etd/289
  • Schneider, M.K. et al., 2007. Towards a hydrological classification of European soils: preliminary test of its predictive power for the base flow index using river dis- charge data. Hydrology and Earth System Sciences, 11, 1501–1513. doi:10.5194/hess-11-1501-2007
  • Soulis, K.X., et al., 2009. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrology and Earth System Sciences, 13 (5), 605–615. Copernicus GmbH. doi:10.5194/hess-13-605-2009
  • Soulis, K.X. and Dercas, N., 2012. Field calibration of weirs using partial volumetric flow measurements. Journal of Irrigation and Drainage Engineering, 138 (5), 481–484. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)ir.1943-4774.0000424
  • Soulis, K.X. and Valiantzas, J.D., 2012. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach. Hydrology and Earth System Sciences, 16 (3), 1001–1015. doi:10.5194/hess-16-1001-2012
  • Soulis, K.X., Dercas, N., and Valiantzas, J.D., 2012. Wildfires impact on hydrological response - The case of Lykorrema experimental watershed. Global NEST Journal, 14 (3), 303–310. doi:10.30955/gnj.000876
  • Soulis, K.X. and Valiantzas, J.D., 2013. Identification of the SCS-CN parameter spatial distribution using rainfall-runoff data in heterogeneous watersheds. Water Resources Management, 27 (6), 1737–1749. Kluwer Academic Publishers. doi:10.1007/s11269-012-0082-5
  • Soulis, K.X., Dercas, N., and Papadaki, C., 2015. Effects of forest roads on the hydrological response of a small-scale mountain watershed in Greece. Hydrological Processes, 29 (7), 1772–1782. doi:10.1002/hyp.10301
  • Soulis, K.X., 2018. Estimation of SCS Curve Number variation following forest fires. Hydrological Sciences Journal, 63 (9), 1332–1346. Taylor and Francis. doi:10.1080/02626667.2018.1501482
  • Soulis, K.X., Londra, P.A., and Kargas, G., 2020. Characterizing surface soil layer saturated hydraulic conductivity in a Mediterranean natural watershed. Hydrological Sciences Journal, 65 (15), 2616–2629. Taylor and Francis Ltd. doi:10.1080/02626667.2020.1831694
  • Soulis, K.X., et al., 2021. Article hydrological response of natural Mediterranean watersheds to forest fires. Hydrology, 8 (1), 1–23. MDPI AG. doi:10.3390/hydrology8010015
  • Stamou, et al., 2018. Determination of environmental flows in rivers using an integrated. hydrological-hydrodynamic-habitat Modelling Approach. Journal of Environmental Management, 209 (January), 273–285. Elsevier Ltd. doi:10.1016/j.jenvman.2017.12.038.
  • Theodoropoulos, C., Skoulikidis, N., and Stamou, A., 2016. Habfuzz: a tool to calculate the instream hydraulic habitat suitability using fuzzy logic and fuzzy Bayesian inference. Journal of Open Source Software, 1 (6), 82. doi:10.21105/joss.00082
  • Theodoropoulos, C., et al., 2017. Response of freshwater macroinvertebrates to rainfall-induced high flows: a hydroecological approach. Ecological Indicators, 73, 432–442. Elsevier B.V. doi:10.1016/j.ecolind.2016.10.011
  • Theodoropoulos, C., et al., 2018a. Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates. Journal of Ecohydraulics, 3 (1), 30–44. Informa UK Limited. doi:10.1080/24705357.2018.1440360
  • Theodoropoulos, C., et al., 2018b. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Research and Applications, 34 (6), 538–547. John Wiley and Sons Ltd. doi:10.1002/rra.3284
  • Theodoropoulos, C., et al., 2020. River restoration is prone to failure unless pre-optimized within a mechanistic ecological framework | insights from a model-based case study. Water Research, 173, 115550. Elsevier Ltd. doi:10.1016/j.watres.2020.115550
  • Theodoropoulos, C. and Karaouzas, I., 2021. Climate change and the future of Mediterranean freshwater macroinvertebrates: a model-based assessment. Hydrobiologia, 848 (21), 5033–5050. doi:10.1007/s10750-021-04691-x
  • Urbanic, G., et al., 2020. Disentangling the effects of multiple stressors on large rivers using benthic invertebrates-a study of Southeastern European large rivers with implications for management. Water (Switzerland), 12 (3), 621. MDPI AG. doi:10.3390/w12030621
  • Venkatesh, K., Preethi, K., and Ramesh, H., 2020. Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecological Indicators, 110, 105856. Elsevier B.V. doi:10.1016/j.ecolind.2019.105856
  • Verkaik, I., et al., 2013. Seasonal drought plays a stronger role than wildfire in shaping macroinvertebrate communities of Mediterranean streams. International Review of Hydrobiology, 98 (6), 271–283. doi:10.1002/iroh.201201618
  • Verkaik, I., et al., 2015. Stream macroinvertebrate community responses to fire: are they the same in different fire-prone biogeographic regions? Freshwater Science, 34 (4), 1527–1541. doi:10.1086/683370
  • Versini, P.-A., et al., 2013. Hydrological impact of forest fires and climate change in a Mediterranean basin. Natural Hazards, 66 (2), 609–628. Kluwer Academic Publishers. doi:10.1007/s11069-012-0503-z
  • Vu, T.T., et al., 2015. Article no.BJECC.2015.013 place and duration of study: DHI-NTU centre, Nanyang Environment and Water Research Institute (NEWRI). Nanyang Technological Original Research Article, BJECC (2), 162–175. doi:10.9734/BJECC/2015/12885
  • Wayne Minshall, G., Robinson, C.T., and Lawrence, D.E., 1997. Postfire responses of lotic ecosystems in Yellowstone National Park, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences, 54 (11), 2509–2525. National Research Council of Canada. doi:10.1139/f97-160
  • Wilkinson, C. and Brodie, J. 2011. Catchment Management and Coral Reef Conservation: a practical guide for coastal resource managers to reduce damage from catchment areas based on best practice case studies. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre Townsville, Australia, 120. https://www.iucn.org/sites/dev/files/import/downloads/2011_012_2.pdf
  • Williams, C., et al., 2014. Impacts of wildfire on interception losses and net precipitation in a Sub-Alpine Rocky Mountain Watershed in Alberta, Canada. AGUFM, 2014, H51I–0721. https://ui.adsabs.harvard.edu/abs/2014AGUFM.H51I0721W/abstract
  • Williams-Subiza, E.A. and Brand, C., 2021. Functional response of benthic macroinvertebrates to fire disturbance in patagonian streams. Hydrobiologia, 848 (7), 1575–1591. Springer Science and Business Media Deutschland GmbH. doi:10.1007/s10750-021-04548-3
  • Wright, K.A., et al., 2017. Improvings. River Research and Applications, 33 (1), 170–181. doi:10.1002/rra.3067

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.