452
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Drought forecasting using the Prophet model in a semi-arid climate region of western India

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1397-1417 | Received 16 Feb 2021, Accepted 13 Apr 2022, Published online: 21 Jun 2022

References

  • Abbasi, A., et al., 2019. Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoretical and Applied Climatology, 138 (1–2), 553–567. doi:10.1007/s00704-019-02825-9
  • Abdourahamane, Z.S. and Acar, R., 2019. Fuzzy rule-based forecast of meteorological drought in western Niger. Theoretical and Applied Climatology, 135 (1–2), 157–168. doi:10.1007/s00704-017-2365-5
  • Adnan, R.M., et al., 2017. Streamflow forecasting using artificial neural network and support vector machine models. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 29 (1), 286–294.
  • Aguilera, H., et al., 2019. Towards flexible groundwater-level prediction for adaptive water management: using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64 (12), 1504–1518. doi:10.1080/02626667.2019.1651933
  • Aladaileh, H., et al., 2019. An investigation into the spatial and temporal variability of the meteorological drought in Jordan. Climate, 7 (6), 82. doi:10.3390/cli7060082
  • Ali, M., et al., 2019. Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms. Journal of Hydrology, 576, 164–184. doi:10.1016/j.jhydrol.2019.06.032
  • Arikan, B.B. and Kahya, E., 2017. Drought forecasting using genetic programming in association with southern oscillation indices. In: ATMOS 2017, 8th atmospheric sciences symposium. Istanbul, Turkey.
  • Awchi, T.A. and Kalyana, M.M., 2017. Meteorological drought analysis in northern Iraq using SPI and GIS. Sustainable Water Resources Management, 3 (4), 451–463. doi:10.1007/s40899-017-0111-x
  • Balti, H., et al., 2020. A review of drought monitoring with big data: issues, methods, challenges and research directions. Ecological Informatics, 60, 101136. doi:10.1016/j.ecoinf.2020.101136
  • Barua, S., et al., 2012. Artificial neural network–based drought forecasting using a non-linear aggregated drought index. Journal of Hydrologic Engineering, 17 (12), 1408–1413.
  • Barzegar, R., et al., 2017. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment, 599, 20–31. doi:10.1016/j.scitotenv.2017.04.189
  • Bazrafshan, O., et al., 2015. Hydrological drought forecasting using ARIMA models (Case study: Karkheh Basin). Ecopersia, 3 (3), 1099–1117.
  • Belayneh, A. and Adamowski, J., 2012. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Applied Computational Intelligence and Soft Computing, 2012, 1–13. doi:10.1155/2012/794061
  • Belayneh, A., et al., 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418–429. doi:10.1016/j.jhydrol.2013.10.052
  • Benitez, J.B. and Domecq, R.M., 2014. Analysis of meteorological drought episodes in Paraguay. Climatic Change, 127 (1), 15–25. doi:10.1007/s10584-014-1260-7
  • Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13 (1), 281–305.
  • Berrendero, J.R., Cuevas, A., and Torrecilla, J.L., 2016. The mRMR variable selection method: a comparative study for functional data. Journal of Statistical Computation and Simulation, 86 (5), 891–907. doi:10.1080/00949655.2015.1042378
  • Bhuiyan, C. and Kogan, F.N., 2010. Monsoon variation and vegetative drought patterns in the Luni Basin in the rain-shadow zone. International Journal of Remote Sensing, 31 (12), 3223–3242. doi:10.1080/01431160903159332
  • Borji, M., et al., 2016. Multi-time-scale analysis of hydrological drought forecasting using support vector regression (SVR) and artificial neural networks (ANN). Arabian Journal of Geosciences, 9 (19), 725. doi:10.1007/s12517-016-2750-x
  • Byun, H.R. and Wilhite, D.A., 1999. Objective quantification of drought severity and duration. Journal of Climate, 12 (9), 2747–2756. doi:10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
  • Chang, N.B., et al., 2010. Development of the Metropolitan Water Availability Index (MWAI) and short-term assessment with multiscale remote sensing technologies. Journal of Environmental Management, 91 (6), 1397–1413. doi:10.1016/j.jenvman.2010.02.024
  • Chang, C.C. and Lin, C.J., 2011. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2 (3), 1–27. doi:10.1145/1961189.1961199
  • Chavadekar, A.U. and Kashid, S.S., 2019. Meteorological drought prediction of marathwada subdivision based on hydro-climatic inputs using genetic programming. ISH Journal of Hydraulic Engineering, 27, 1–13.
  • Chen, H. and Sun, J., 2015. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Journal of Climate, 28 (13), 5430–5447. doi:10.1175/JCLI-D-14-00707.1
  • Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine Learning, 20 (3), 273–297. doi:10.1007/BF00994018
  • Danandeh Mehr, A., et al., 2019. Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrological Sciences Journal, 65 (2), 254–268. doi:10.1080/02626667.2019.1691218
  • Das, J., et al., 2020a. Meteorological drought analysis using standardized precipitation index over Luni River Basin in Rajasthan, India. SN Applied Sciences, 2 (9), 1–17. doi:10.1007/s42452-020-03321-w
  • Das, P., et al., 2020b. Hybrid wavelet packet machine learning approaches for drought modeling. Environmental Earth Sciences, 79 (2020), 221. doi:10.1007/s12665-020-08971-y
  • Deo, R.C. and Şahin, M., 2015a. Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydro meteorological parameters and climate indices in eastern Australia. Atmospheric Research, 161, 65–81. doi:10.1016/j.atmosres.2015.03.018
  • Deo, R.C. and Şahin, M., 2015b. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research, 153, 512–525. doi:10.1016/j.atmosres.2014.10.016
  • Deo, R.C., et al., 2017. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31 (5), 1211–1240. doi:10.1007/s00477-016-1265-z
  • Djerbouai, S. and Souag-Gamane, D., 2016. Drought forecasting using neural networks, wavelet neural networks, and stochastic models: case of the Algerois Basin in North Algeria. Water Resources Management, 30 (7), 2445–2464. doi:10.1007/s11269-016-1298-6
  • El Ibrahimi, A. and Baali, A., 2018. Application of several artificial intelligence models for forecasting meteorological drought using the standardized precipitation index in the saïss plain (Northern Morocco). International Journal of Intelligent Engineering and Systems, 11 (1), 267–275. doi:10.22266/ijies2018.0228.28
  • Farokhnia, A., Morid, S., and Byun, H.-R., 2011. Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology, 104 (1–2), 71–81. doi:10.1007/s00704-010-0317-4
  • Ferreira, L.B., et al., 2019. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–a new approach. Journal of Hydrology, 572, 556–570. doi:10.1016/j.jhydrol.2019.03.028
  • Galelli, S., et al., 2014. An evaluation framework for input variable selection algorithms for environmental data-driven models. Environmental Modelling & Software, 62, 33–51. doi:10.1016/j.envsoft.2014.08.015
  • Ganguli, P. and Reddy, M.J., 2014. Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach. Hydrological Processes, 28 (19), 4989–5009. doi:10.1002/hyp.9966
  • Ghorbani, B., et al., 2020. Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze–thaw cycles using ANN and SVR. Construction and Building Materials, 258, 119688. doi:10.1016/j.conbuildmat.2020.119688
  • Harvey, A.C. and Shephard, N., 1993. 10 structural time series models.
  • Hayes, M., et al., 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92 (4), 485–488. doi:10.1175/2010BAMS3103.1
  • Hejazi, M.I. and Cai, X., 2009. Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm. Advances in Water Resources, 32 (4), 582–593. doi:10.1016/j.advwatres.2009.01.009
  • Hervás-Gámez, C. and Delgado-Ramos, F., 2019. Drought management planning policy: from Europe to Spain. Sustainability, 11 (7), 1862. doi:10.3390/su11071862
  • Hudson, D., et al., 2011. Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Quarterly Journal of the Royal Meteorological Society, 137 (656), 673–689. doi:10.1002/qj.769
  • India-WRIS WebGIS Report, Ministry of Water Resources, Government of India, 2014.
  • Javanmard, S., et al., 2017. Spatial–temporal analysis of drought in Iran using SPI during a long-term period. Earth Sciences, 6 (2), 15. doi:10.11648/j.earth.20170602.12
  • Joseph, R., 2018. Grid search for model tuning.
  • Kamruzzaman, M., et al., 2018. Modeling of agricultural drought risk pattern using Markov chain and GIS in the western part of Bangladesh. Environment, Development and Sustainability, 20 (2), 569–588. doi:10.1007/s10668-016-9898-0
  • Karanja, A., 2017. Analysis of temporal drought characteristic using SPI drought index based on rainfall data in Laikipia west sub-county, Kenya. Open Access Library Journal, 4 (10), 1.
  • Karimi, M., Melesse, A.M., Khosravi, K., Mamuye, M., Zhang, J.M. 2019. Chapter 26 - Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin, Iran. In: A.M. Melesse, W.A, Gabriel Senay, eds. Extreme hydrology and climate variability. Elsevier, 343–353.
  • Karran, D.J., Morin, E., and Adamowski, J., 2014. Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes. Journal of Hydroinformatics, 16 (3), 671–689. doi:10.2166/hydro.2013.042
  • Khan, N., et al., 2020. Prediction of droughts over Pakistan using machine learning algorithms. Advances in Water Resources, 139, 103562.
  • Kocsis, T., Kovács-Székely, I., and Anda, A., 2020. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology, 139 (3–4), 849–859. doi:10.1007/s00704-019-03014-4
  • Komasi, M., et al., 2017. Drought forecasting by SPI and EDI indices using anfis method based on c-mean and sc clustering (Case study: Kohgiluyeh and Boyer Ahmad province).
  • Komasi, M., Sharghi, S., and Safavi, H.R., 2018. Wavelet and cuckoo search-support vector machine conjugation for drought forecasting using standardized precipitation index (Case study: Urmia Lake, Iran). Journal of Hydroinformatics, 20 (4), 975–988. doi:10.2166/hydro.2018.115
  • Kumar, R., Kumar, M., and Majid, M., 2018. Meteorological drought analysis based on rainfall data of temperate region of Kashmir. Journal of Soil and Water Conservation, 17 (4), 344–349. doi:10.5958/2455-7145.2018.00053.X
  • Kumar, M.D., Bassi, N., James, A.J. 2019. Water accounting for Luni River Basin, Western Rajasthan. In: M.D. Kumar, V.R. Reddy, A.J. James, eds. Current directions in water scarcity research. Elsevier, Vol. 1, 183–212.
  • Kundu, A., et al., 2020. An estimation of hydrometeorological drought stress over the central part of India using geo-information technology. Journal of the Indian Society of Remote Sensing, 48 (1), 1–9.
  • Le, M.H., et al., 2016. Meteorological drought forecasting based on climate signals using artificial neural network–a case study in Khanhhoa Province Vietnam. Procedia Engineering, 154, 1169–1175. doi:10.1016/j.proeng.2016.07.528
  • Li, M., et al., 2019. Hydrological drought forecasting incorporating climatic and human-induced indices. Weather and Forecasting, 34 (5), 1365–1376. doi:10.1175/WAF-D-19-0029.1
  • Liu, J., et al., 2018. Research of photovoltaic power forecasting based on big data and mRMR feature reduction. In: IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA. IEEE. https://doi.org/10.1109/PESGM.2018.8585967
  • Liu, H., Wu, J., and Xu, Y., 2019. Investigating the effects of precipitation on drought in the Hanjiang River Basin using SPI. Journal of Water and Climate Change, 10 (4), 977–992. doi:10.2166/wcc.2018.102
  • Lorenzo, P.R., et al., 2017. Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary computation conference. Berlin, Germany, 481–488. https://doi.org/10.1145/3071178.3071208
  • Maca, P. and Pech, P., 2016. Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Computational Intelligence and Neuroscience, 2016, 1–17. doi:10.1155/2016/3868519
  • McKee, T.B., et al., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology. Anaheim, California. Vol. 17, 179–183.
  • Mishra, A.K., Desai, V.R., and Singh, V.P., 2007. Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering, 12 (6), 626–638. doi:10.1061/(ASCE)1084-0699(2007)12:6(626)
  • Mokhtarzad, M., et al., 2017. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environmental Earth Sciences, 76 (21), 729. doi:10.1007/s12665-017-7064-0
  • Moriasi, D., et al., 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE, 58, 1763–1785.
  • Morid, S., Smakhtin, V., and Bagherzadeh, K., 2007. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27 (15), 2103–2111. doi:10.1002/joc.1498
  • Mossad, A. and Alazba, A.A., 2018. Determination and prediction of standardized precipitation index (SPI) using TRMM data in arid ecosystems. Arabian Journal of Geosciences, 11 (6), 132. doi:10.1007/s12517-018-3487-5
  • Mouatadid, S., et al., 2019. Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agricultural Water Management, 219, 72–85. doi:10.1016/j.agwat.2019.03.045
  • Mulualem, G.M. and Liou, Y.A., 2020. Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the upper blue Nile Basin. Water, 12 (3), 643. doi:10.3390/w12030643
  • Nabipour, N., et al., 2020. Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks. IEEE Access, 8, 15210–15222. doi:10.1109/ACCESS.2020.2964584
  • Nguyen, V., et al., 2017. Drought forecasting using ANFIS-a case study in drought prone area of Vietnam. Paddy and Water Environment, 15 (3), 605–616. doi:10.1007/s10333-017-0579-x
  • Nguyen, L.B. and Le, M.H., 2020. Application of artificial neural network and climate indices to drought forecasting in South-Central Vietnam. Polish Journal of Environmental Studies, 29 (2), 1293–1303. doi:10.15244/pjoes/105972
  • Omidvar, E. and Tahroodi, Z.N., 2019. Evaluation and prediction of meteorological drought conditions using time-series and genetic programming models. Journal of Earth System Science, 128 (3), 73. doi:10.1007/s12040-019-1103-z
  • Özger, M., Mishra, A.K., and Singh, V.P., 2012. Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas. Journal of Hydrometeorology, 13 (1), 284–297. doi:10.1175/JHM-D-10-05007.1
  • Palmer, W.C., 1965. Meteorological drought. Washington, D.C.: US Department of Commerce, Weather Bureau, Vol. 30.
  • Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21 (4), 156–161. doi:10.1080/00431672.1968.9932814
  • Panklib, K., Prakasvudhisarn, C., and Khummongkol, D., 2015. Electricity consumption forecasting in Thailand using an artificial neural network and multiple linear regression. Energy Sources, Part B: Economics, Planning, and Policy, 10 (4), 427–434. doi:10.1080/15567249.2011.559520
  • Panu, U.S. and Sharma, T.C., 2002. Challenges in drought research: some perspectives and future directions. Hydrological Sciences Journal, 47 (S1), S19–S30. doi:10.1080/02626660209493019
  • Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D., 2018. Predictability of monthly temperature and precipitation using automatic time series forecasting methods. Acta Geophysica, 66 (4), 807–831. doi:10.1007/s11600-018-0120-7
  • Papacharalampous, G.A. and Tyralis, H., 2018. Evaluation of random forests and Prophet for daily streamflow forecasting. Advances in Geosciences, 45, 201–208. doi:10.5194/adgeo-45-201-2018
  • Peng, H., Long, F., and Ding, C., 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (8), 1226–1238. doi:10.1109/TPAMI.2005.159
  • Portela, M.M., et al., 2015. A comprehensive drought analysis in Slovakia using SPI. European Water, 51, 15–31.
  • Pourkhosravani, M., et al., 2019. Spatial monitoring of drought in the Khatun Abad basin using SPI and remote sensing technique. Desert Ecosystem Engineering Journal, 3 (1), 31–44.
  • Pradhan, S., et al., 2011. Analysis of meteorological drought at New Delhi using SPI.
  • Pradhan, R.K., et al., 2019. Changes of precipitation regime and its indices over Rajasthan state of India: impact of climate change scenarios experiments. Climate Dynamics, 52 (5–6), 3405–3420. doi:10.1007/s00382-018-4334-9
  • Quilty, J., et al., 2016. Bootstrap rank‐ordered conditional mutual information (broCMI): a non-linear input variable selection method for water resources modeling. Water Resources Research, 52 (3), 2299–2326. doi:10.1002/2015WR016959
  • Rad, A.M., et al., 2017. Integrated meteorological and hydrological drought model: a management tool for proactive water resources planning of semi-arid regions. Advances in Water Resources, 107, 336–353. doi:10.1016/j.advwatres.2017.07.007
  • Raghavendra, S. and Dek, P.C., 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19, 372–386. doi:10.1016/j.asoc.2014.02.002
  • Rahman, A.T.M.S., Hosono, T., Quilty, J.M., Das, J. and Basak, A., 2020a. Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Advances in Water Resources, 141, 103595.
  • Rahman, A.S., et al., 2020b. A minimalistic approach for evapotranspiration estimation using the Prophet model. Hydrological Sciences Journal, 65 (12), 1994–2006. doi:10.1080/02626667.2020.1787416
  • Rajaee, T., Ebrahimi, H., and Nourani, V., 2019. A review of the artificial intelli- gence methods in groundwater level modeling. journal of Hydrology, 572, 336–351. doi:10.1016/jjhydrol.2018.12.037
  • Rhee, J. and Im, J., 2017. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 237, 105–122. doi:10.1016/j.agrformet.2017.02.011
  • Roodposhti, M.S., Safarrad, T., and Shahabi, H., 2017. Drought sensitivity mapping using two one-class support vector machine algorithms. Atmospheric Research, 193, 73–82. doi:10.1016/j.atmosres.2017.04.017
  • Roy, A., Manna, R., and Chakraborty, S., 2019. Support vector regression-based metamodeling for structural reliability analysis. Probabilistic Engineering Mechanics, 55, 78–89. doi:10.1016/j.probengmech.2018.11.001
  • Sahoo, S. and Jha, M.K., 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeology Journal, 21 (8), 1865–1887. doi:10.1007/s10040-013-1029-5
  • Sarailidis, G., Vasiliades, L., and Loukas, A., 2019. Analysis of streamflow droughts using fixed and variable thresholds. Hydrological Processes, 33 (3), 414–431. doi:10.1002/hyp.13336
  • Schwalm, C.R., et al., 2017. Global patterns of drought recovery. Nature, 548 (7666), 202–205. doi:10.1038/nature23021
  • Šebenik, U., et al., 2017. Drought analysis using the standardized precipitation index (SPI). Acta GeographicaSlovenica, 57 (1), 31–49.
  • Seibert, M., Merz, B., and Apel, H., 2017. Seasonal forecasting of hydrological drought in the Limpopo Basin: a comparison of statistical methods. Hydrology and Earth System Sciences, 21 (3), 1611–1629. doi:10.5194/hess-21-1611-2017
  • Shafer, B.A. and Dezman, L.E., 1982. Development of surface water supply index (swsi) to assess the severity of drought condition in snowpack runoff areas. In: Proceeding of the western snow conference. Colorado State University, Fort Collins, 164–175.
  • Shakiba, A., et al., 2010. Drought analysis using SPI index and its effects on groundwater resources in East of Kermanshah, Iran. In: 10th EMS annual meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, held September 13–17, 2010 in Zürich, Switzerland. id. EMS2010-335. Available from: http://meetings.copernicus.org/ems2010/
  • Sharma, A., et al., 2018. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global and Planetary Change, 161, 82–96. doi:10.1016/j.gloplacha.2017.12.008
  • Shirmohammadi, B., et al., 2013. Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran). Natural Hazards, 69 (1), 389–402. doi:10.1007/s11069-013-0716-9
  • Sihananto, A.N., et al., 2017. Drought forecasting using ANFIS on tuban regency, Indonesia. In: 2017 international conference on Sustainable Information Engineering and Technology (SIET), 316–320. IEEE. doi:10.1109/SIET.2017.8304155.
  • Soh, Y.W., et al., 2018. Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Computers and Electronics in Agriculture, 144, 164–173. doi:10.1016/j.compag.2017.12.002
  • Surendran, U., et al., 2017. Development of drought indices for semi-arid region using drought indices calculator (DrinC)–a case study from Madurai District, a semi-arid region in India. Water Resources Management, 31 (11), 3593–3605. doi:10.1007/s11269-017-1687-5
  • Svoboda, M. and Fuchs, B., 2016. Handbook of drought indicators and indices. Geneva, Switzerland: World Meteorological Organization, 1–44.
  • Tarawneh, Z. and Khalayleh, Y., 2016. Improved estimate of multiyear drought for water resources management studies. Journal of Water and Climate Change, 7 (4), 721–730. doi:10.2166/wcc.2016.151
  • Taylor, S.J. and Letham, B., 2017. Forecasting at scale. The American Statistician, 72 (1), 37–45. doi:10.1080/00031305.2017.1380080
  • Taylor, S.J. and Letham, B., 2019. Prophet: automatic forecasting procedure, R package version 0.5. Available from: https://cran.r-project.org/web/packages/Prophet/index.html [ Accessed 1 Apr 2019].
  • Thom, H.C.S., 1966. Some methods of climatological analysis (No. 551.5 T4).
  • Toğaçar, M., et al., 2020. A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. IRBM, 41 (4), 212–222. doi:10.1016/j.irbm.2019.10.006
  • Topcu, E. and Seckin, N., 2016. Drought analysis of the Seyhan Basin by using standardized precipitation index (SPI) and L-moments. Journal of Agricultural Sciences, 22 (2), 196–215.
  • Topping, D., et al., 2020. Evaluating the use of Facebook’s Prophet model v0.6 in forecasting concentrations of NO2 at single sites across the UK and in response to the COVID-19 lockdown in Manchester, England. Geoscientific Model Development Discussion. doi:10.5194/gmd-2020-270
  • Toulios, L., et al., 2012. Capitolo III potential of remote sensing to support the assessment of climate change and variability on European agriculture. Climate Change Impacts on Agriculture in Europe, 93.
  • Tsakiris, G., Pangalou, D., and Vangelis, H., 2007. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21 (5), 821–833. doi:10.1007/s11269-006-9105-4
  • Van Loon, A.F., 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2 (4), 359–392. doi:10.1002/wat2.1085
  • Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23 (7), 1696–1718. doi:10.1175/2009JCLI2909.1
  • Yan, J., et al., 2019. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 158 (2019), 249–262. doi:10.1016/j.isprsjprs.2019.10.003
  • Yang, W., 2010. Drought analysis under climate change by application of drought indices and copulas.
  • Yeh, H.F. and Hsu, H.L., 2019. Stochastic model for drought forecasting in the Southern Taiwan Basin. Water, 11 (10), 2041. doi:10.3390/w11102041
  • Yu, T. and Zhu, H., 2020. Hyper-parameter optimization: a review of algorithms and applications. arXiv preprint arXiv:2003.05689.
  • Yuan, X., et al., 2017. Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrology and Earth System Sciences, 21 (11), 5477. doi:10.5194/hess-21-5477-2017
  • Zahraie, B., Nasseri, M., and Nematizadeh, F., 2017. Exploring spatiotemporal meteorological correlations for basin scale meteorological drought forecasting using data mining methods. Arabian Journal of Geosciences, 10 (19), 419. doi:10.1007/s12517-017-3211-x
  • Zambrano, F., et al., 2017. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 186, 26–42. doi:10.1016/j.atmosres.2016.11.006
  • Zhang, Q., et al., 2015. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Global and Planetary Change, 131, 63–72. doi:10.1016/j.gloplacha.2015.05.007
  • Zhang, Y., et al., 2017. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stochastic Environmental Research and Risk Assessment, 31 (10), 2471–2481. doi:10.1007/s00477-017-1437-5
  • Zhang, R., et al., 2019a. Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China. Science of the Total Environment, 665, 338–346. doi:10.1016/j.scitotenv.2019.01.431
  • Zhang, Y., et al., 2019b. Comparison of the Ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China. Natural Resources Research, 29, 1447–1464. doi:10.1007/s11053-019-09512-6.
  • Zhao, N., et al., 2018. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the Prophet procedure. Atmospheric Environment, 192, 116–127. doi:10.1016/j.atmosenv.2018.08.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.