418
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Assessing machine learning models for streamflow estimation: a case study in Oued Sebaou watershed (Northern Algeria)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1328-1341 | Received 24 Jul 2021, Accepted 21 Apr 2022, Published online: 28 Jun 2022

References

  • Abda, Z. and Chettih, M., 2018. Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert–Huang transforms in the Mediterranean basin in northern Algeria. Acta Geophysica, 66 (5), 1131–1150. doi:10.1007/s11600-018-0188-0
  • Abda, Z., et al., 2019. Efficiency of a Neuro-Fuzzy model based on the Hilbert-Huang transform for flood prediction. In: H.I. Chaminé, ed. Advances in sustainable and environmental hydrology, hydrogeology, hydrochemistry and water resources. advances in science. Cham: Technology & Innovation, Springer, 401–404 doi:10.1007/978-3-030-01572-5_94
  • Abda, Z., Chettih, M., and Zerouali, B., 2021a. Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates forecasting. Modeling Earth Systems and Environment, 7, 1523–1538. doi:10.1007/s40808-020-00855-1
  • Abda, Z., et al., 2021b. Suspended sediment load simulation during flood events using intelligent systems: a case study on semiarid regions of Mediterranean basin. Water, 13 (24), 3539. doi:10.3390/w13243539
  • Abid, S., Mouelhi, A., and Fnaiech, F., 2006. Accelerating the multilayer perceptron learning with the Davidon Fletcher Powell algorithm. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 3389–3394. doi:10.1109/IJCNN.2006.247340
  • Adamowski, J. and Karapataki, C., 2010. Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering, 15 (10), 729–743. d oi:1 0.1061/ %28ASCE% 29HE.1943-5584.000024
  • Adnan, R.M., et al., 2020. Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35, 597–616. doi:10.1007/s00477-020-01910-0
  • Adnan, R.M., et al., 2021a. Novel ensemble forecasting of streamflow using locally weighted learning algorithm. Sustainability, 13, 5877. doi:10.3390/su13115877
  • Adnan, R.M., et al., 2021b. Comparison of different methodologies for rainfall-runoff modeling: machine learning vs conceptual approach. Natural Hazards, 105, 2987–3011. doi:10.1007/s11069-020-04438-2
  • Ahmadianfar, I., Jamei, M., and Chu, X., 2020. A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in surface water. Journal of Contaminant Hydrology, 232, 103641. doi:10.1016/j.jconhyd.2020.103641
  • Ali, S. and Shahbaz, M., 2020. Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks. Modeling Earth Systems and Environment, 6 (3), 1645–1656. doi:10.1007/s40808-020-00780-3
  • Bajirao, T.S., et al., 2021. Superiority of hybrid soft computing models in daily suspended sediment estimation in highly dynamic rivers. Sustainability, 13 (2), 542. doi:10.3390/su13020542
  • Bekas, G.K., Alexakis, D.E., and Gamvroula, D.E., 2021. Forecasting discharge rate and chloride content of karstic spring water by applying the Levenberg–Marquardt algorithm. Environmental Earth Sciences, 80 (11), 1–12. doi:10.1007/s12665-021-09685-5
  • Bouguerra, H., et al., 2019. Suspended sediment discharge modeling during flood events using two different artificial neural network algorithms. Acta Geophysica, 67 (6), 1649–1660. doi:10.1007/s11600-019-00373-4
  • Breiman, L., 2001. Random Forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324
  • Bustami, R.A., Bessaih, N., and Muhammad, M.S., 2006. Artificial neural network for daily water level estimation. Engineering e-Transaction, 1 (1), 7–12.
  • Chaipimonplin, T., 2016. Investigation internal parameters of neural network model for flood forecasting at upper river ping, Chiang Mai. KSCE Journal of Civil Engineering, 20 (1), 478–484. doi:10.1007/s12205-015-1282-3
  • Chaipimonplin, T., 2017. Comparison learning algorithms for artificial neural network model for flood forecasting, Chiang Mai, Thailand. 22nd International Congress on Modelling and Simulation (MODSIM 2017), 472–479.
  • Chang, T.K., et al., 2017. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. Journal of Hydrology, 545, 100–108. doi:10.1016/j.jhydrol.2016.12.024
  • Chattopadhyay, S. and Chattopadhyay, G., 2018. Conjugate gradient descent learned ANN for Indian summer monsoon rainfall and efficiency assessment through Shannon-Fano coding. Journal of Atmospheric and Solar-Terrestrial Physics, 179, 202–205.
  • Clark, M.P., et al., 2021. The abuse of popular performance metrics in hydrologic modeling. Water Resources Research, 57. doi:10.1029/2020wr029001
  • Davis, D.T., et al., 1993. Retrieval of snow parameters by iterative inversion of a neural network. IEEE Transactions on Geoscience and Remote Sensing, 31 (4), 842–852. doi:10.1109/36.239907
  • De Farias, C.A.S. and Santos, C.A.G., 2014. The use of Kohonen neural networks for runoff–erosion modeling. Journal of Soils and Sediments, 14 (7), 1242–1250. doi:10.1007/s11368-013-0841-9
  • Djemai, M., 2008. Bilan physico-chimique des eaux de la vallée de l’ouest Sébaou et son environnement immédiat: impact de l’urbanisation, l’agriculture et l’industrie sur la qualité des eaux en Grande Kabylie. Thèse de doctorat Géologie Appliquée, Université Mouloud Maameri de Tizi Ouzo.
  • Elbeltagi, A., et al., 2021a. Applications of Gaussian process regression for predicting blue water footprint: case study in Ad Daqahliyah, Egypt. Agricultural Water Management, 255, 107052. doi:10.1016/j.agwat.2021.107052
  • Elbeltagi, A., et al., 2021b. Prediction of combined terrestrial evapotranspiration index (CTEI) over large river basin based on machine learning approaches. Water, 13 (4), 547. doi:10.3390/w13040547
  • Fanos, A.M. and Pradhan, B., 2019. A spatial ensemble model for rockfall source identification from high resolution LiDAR data and GIS. IEEE Access, 7, 74570–74585. doi:10.1109/ACCESS.2019.2919977
  • Ferreira, R.G., et al., 2021. Machine learning models for streamflow regionalization in a tropical watershed. Journal of Environmental Management, 280, 111713. doi:10.1016/j.jenvman.2020.111713
  • Freire, P.K.M.M., Santos, C.A.G., and Da Silva, G.B.L., 2019. Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting. Applied Soft Computing Journal, 80, 494–505. doi:10.1016/j.asoc.2019.04.024
  • Freire, P.K.M.M. and Santos, C.A.G., 2020. Optimal level of wavelet decomposition for daily inflow forecasting. Earth Science Informatics, 13, 1163–1173. doi:10.1007/s12145-020-00496-z
  • Gayathri, K.D., Ganasri, B.P., and Dwarakish, G.S., 2015. A review on hydrological models. Aquatic Procedia, 4 (Icwrcoe), 1001–1007. doi:10.1016/j.aqpro.2015.02.126
  • Ghorbani, H., et al., 2019. Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: an oil field case study. Journal of Petroleum Exploration and Production Technology, 9 (2), 1355–1373. doi:10.1007/s13202-018-0532-6
  • Guzman, S.M., Paz, J.O., and Tagert, M.L.M., 2017. The use of NARX neural networks to forecast daily groundwater levels. Water Resources Management, 31 (5), 1591–1603. doi:10.1007/s11269-017-1598-5
  • Hastie, T., Tibshirani, R., and Friedman, J.H., 2017. The elements of statistical learning (Second). Berlin: Springer.
  • Hauduc, H., et al., 2015. Efficiency criteria for environmental model quality assessment: a review and its application to wastewater treatment. Environmental Modelling & Software, 68, 196–204. doi:10.1016/j.envsoft.2015.02.004
  • Honorato, A.G.D.S.M., Silva, G.B.L.D., and Guimaraes Santos, C.A., 2019. Monthly streamflow forecasting using neuro-wavelet techniques and input analysis. Hydrological Sciences Journal, 63, 1–16. doi:10.1080/02626667.2018.1552788
  • Hu, C., et al., 2018. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10 (11), 1543. doi:10.3390/w10111543
  • Huang, Z.Y., et al., 2020. Predicting the morbidity of chronic obstructive pulmonary disease based on multiple locally weighted linear regression model with K-means clustering. International Journal of Medical Informatics, 139, 104141. doi:10.1016/j.ijmedinf.2020.104141
  • Hussain, D. and Khan, A.A., 2020. Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Science Informatics, 13 (3), 939–949. doi:10.1007/s12145-020-00450-z
  • Jamei, M., et al., 2021. Estimation of triangular side orifice discharge coefficient under a free flow condition using data-driven models. Flow Measurement and Instrumentation, 77, 101878. doi:10.1016/j.flowmeasinst.2020.101878
  • Jerin, J.N., et al., 2021. Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theoretical and Applied Climatology, 144, 793–808. doi:10.1007/s00704-021-03566-4
  • Kashani, M.H., et al., 2016. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. Journal of Hydrology, 540, 340–354. doi:10.1016/j.jhydrol.2016.06.028
  • Kisi, O., Latifoğlu, L., and Latifoğlu, F., 2014. Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resources Management, 28 (12), 4045–4057. doi:10.1007/s11269-014-0726-8
  • Kisi, O. and Ozkan, C., 2017. A new approach for modeling sediment-discharge relationship: local weighted linear regression. Water Resources Management, 31 (1), 1–23. doi:10.1007/s11269-016-1481-9
  • Kişi, Ö., 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12 (5), 532–539. doi:10.1061/(ASCE)1084-0699
  • Kumar, M., et al., 2021. The superiority of data-driven techniques for estimation of daily pan evaporation. Atmosphere, 12, 701. doi:10.3390/atmos12060701
  • Li, X., Sha, J., and Wang, Z.L., 2019. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrological Sciences Journal, 64 (15), 1857–1866. doi:10.1080/02626667.2019.1680846
  • Li, M., et al., 2020. Estimating annual runoff in response to forest change: a statistical method based on random forest. Journal of Hydrology, 589, 125168. doi:10.1016/j.jhydrol.2020.125168
  • Lin, Q., et al., 2020. Prediction of maximum flood inundation extents with resilient backpropagation neural network: case study of Kulmbach. Frontiers in Earth Science, 8, 332. doi:10.3389/feart.2020.00332
  • Loucks, D.P. and Beek, E. 2017. Water resource systems planning and management. Water Resource Systems Planning and Management. eBook: Deltares and UNESCO-IHE. doi:10.1007/978-3-319-44234-7
  • Meshram, S.G., et al., 2021. Stream flow prediction based on artificial intelligence techniques. Iranian Journal of Science and Technology-Transactions of Civil Engineering, 45, 2021. doi:10.1007/s40996-021-00696-7
  • Mosavi, A., Ozturk, P., and Chau, K.W., 2018. Flood prediction using machine learning models: literature review. Water, 10 (11), 1–40. doi:10.3390/w10111536
  • Mosavi, A., et al., 2020. Susceptibility mapping of soil water erosion using machine learning models. Water, 12 (7), 1995. doi:10.3390/w12071995
  • Muñoz, P., et al., 2018. Flash-flood forecasting in an andean mountain catchment-development of a step-wise methodology based on the random forest algorithm. Water, 10 (11), 1519. doi:10.3390/w10111519
  • Nacar, S., Hinis, M.A., and Kankal, M., 2018. Forecasting daily streamflow discharges using various neural network models and training algorithms. KSCE Journal of Civil Engineering, 22 (9), 3676–3685. doi:10.1007/s12205-017-1933-7
  • Naghibi, S.A., Ahmadi, K., and Daneshi, A., 2017. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31 (9), 2761–2775. doi:10.1007/s11269-017-1660-3
  • Neill, S.P. and Hashemi, M.R., 2018. Ocean modelling for resource characterization. Fundamentals of Ocean Renewable Energy, 193–235. doi:10.1016/B978-0-12-810448-4.00008-2
  • Nettleton, D., 2014. Selection of variables and factor derivation. Commercial Data Mining, 79–104. doi:10.1016/B978-0-12-416602-8.00006-6
  • Papacharalampous, G.A. and Tyralis, H., 2018. Evaluation of random forests and Prophet for daily streamflow forecasting. Advances in Geosciences, 45, 201–208. doi:10.5194/adgeo-45-201-2018
  • Peng, F., et al., 2020. Monthly streamflow prediction based on random forest algorithm and phase space reconstruction theory. In Journal of Physics: Conference Series, 1637 1, 012091. IOP Publishing. doi:10.1088/1742-6596/1637/1/012091
  • Perera, A. and Rathnayake, U., 2019. Rainfall and atmospheric temperature against the other climatic factors: a case study from Colombo, Sri Lanka. Mathematical Problems in Engineering, 2019, 1–15. doi:10.1155/2019/5692753
  • Pham, L.T., Luo, L., and Finley, A., 2021. Evaluation of random forests for short-term daily streamflow forecasting in rainfall-and snowmelt-driven watersheds. Hydrology and Earth System Sciences, 25 (6), 2997–3015. doi:10.5194/hess-25-2997-2021
  • Piotrowski, A.P. and Napiorkowski, J.J., 2011. Optimizing neural networks for river flow forecasting–evolutionary computation methods versus the Levenberg–Marquardt approach. Journal of Hydrology, 407 (1–4), 12–27. doi:10.1016/j.jhydrol.2011.06.019
  • Poonia, V. and Tiwari, H.L., 2020. Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network. Arabian Journal of Geosciences, 13 (18), 1–10. doi:10.1007/s12517-020-05930-6
  • Rezaeian-Zadeh, M., Tabari, H., and Abghari, H., 2013. Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions. Arabian Journal of Geosciences, 6 (7), 2529–2537. doi:10.1007/s12517-011-0517-y
  • Rezaie-Balf, M., et al., 2019. Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning models: case study of Aswan High Dam. Hydrological Sciences Journal, 64 (13), 1629–1646. doi:10.1080/02626667.2019.1661417
  • Riad, S., et al., 2004. Rainfall-runoff model using an artificial neural network approach. Mathematical and Computer Modelling, 40 (7–8), 839–846. doi:10.1016/j.mcm.2004.10.012
  • Rousseau, R., Egghe, L., and Guns, R., 2018. Becoming metric-wise: a bibliometric guide for researchers. Chandos Publishing.
  • Sameen, M.I., Pradhan, B., and Lee, S., 2019. Self-learning random forests model for mapping groundwater yield in data-scarce areas. Natural Resources Research, 28 (3), 757–775. doi:10.1007/s11053-018-9416-1
  • Santos, C.A.G., et al., 2003. Application of an optimization technique to a physically based erosion model. Hydrological Processes, 17 (5), 989–1003. doi:10.1002/hyp.1176
  • Santos, C.A.G. and Silva, G.B.L., 2014. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59, 312–324. doi:10.1080/02626667.2013.800944
  • Santos, C.A.G., et al., 2019. Hybrid wavelet neural network approach for daily inflow forecasting using tropical rainfall measuring mission data. Journal of Hydrologic Engineering, 24, 04018062. doi:10.1061/(asce)he.1943-5584.0001725
  • Saraiva, S.V., et al., 2021. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing, 102, 107081. doi:10.1016/j.asoc.2021.107081
  • Schoppa, L., Disse, M., and Bachmair, S., 2020. Evaluating the performance of random forest for large-scale flood discharge simulation. Journal of Hydrology, 590, 125531. doi:10.1016/j.jhydrol.2020.125531
  • Shalev-Shwartz, S. and Ben-David, S., 2014. Understanding machine learning: from theory to algorithms. Cambridge University Press, 9781107057. doi:10.1017/CBO9781107298019
  • Shen, Y., et al., 2022. Random forests based error correction of streamflow from a large-scale hydrological model: using model state variables to estimate error terms. Computers and Geosciences, 159, 105019. doi:10.1016/j.cageo.2021.105019
  • Shoaib, M., Shamseldin, A.Y., and Melville, B.W., 2014. Comparative study of different wavelet based neural network models for rainfall-runoff modeling. Journal of Hydrology, 515, 47–58. doi:10.1016/j.jhydrol.2014.04.055
  • Solgi, A., et al., 2014. Evaluation of artificial intelligence systems performance in precipitation forecasting. TI Journals Agriculture Science Developments, 3 (7), 256–264.
  • Talaee, P.H., 2014. Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Computing and Applications, 24 (3), 695–703. doi:10.1007/s00521-012-1287-5
  • Tongal, H. and Booij, M.J., 2018. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. doi:10.1016/j.jhydrol.2018.07.004
  • Tyralis, H., Papacharalampous, G., and Langousis, A., 2019. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water, 11, 910. doi:10.3390/w11050910
  • Wisesty, U.N., 2017. Comparative study of conjugate gradient to optimize learning process of neural network for Intrusion Detection System (IDS). In 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 459–464.
  • Wu, C.L., Chau, K.W., and Fan, C., 2010. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389 (1–2), 146–167. doi:10.1016/j.jhydrol.2010.05.040
  • Yu, P.S., et al., 2017. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. Journal of Hydrology, 552, 92–104. doi:10.1016/j.jhydrol.2017.06.020
  • Zakhrouf, M., Chettih, M., and Mesbah, M., 2014. Adaptive neural fuzzy inference systems for the daily flow forecast in Algerian coastal basins. Desalination and Water Treatment, 52 (10–12), 2131–2138. doi:10.1080/19443994.2013.873740
  • Zerouali, B., et al., 2018. Contribution of cross time-frequency analysis in assessment of possible relationships between large-scale climatic fluctuations and rainfall of northern central Algeria. Arabian Journal of Geosciences, 11 (14), 392. doi:10.1007/s12517-018-3728-7
  • Zerouali, B., et al., 2020. The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophysica, 68, 1443–1460. doi:10.1007/s11600-020-00466-5
  • Zerouali, B., et al., 2021a. Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria). Natural Hazards, 108 (1), 689–709. doi:10.1007/s11069-021-04701-0
  • Zerouali, B., et al., 2021b. Evaluation of karst spring discharge response using time-scale-based methods for a Mediterranean Basin of Northern Algeria. Water, 13 (21), 2946. doi:10.3390/w13212946
  • Zerouali, B., et al., 2022. A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theoretical and Applied Climatology, 147, 1489–1510. doi:10.1007/s00704-021-03883-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.