123
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of river basin-scale hydrologic projections from a clustering based ensemble and model democracy approach using SHETRAN

& ORCID Icon
Pages 1480-1495 | Received 20 Jun 2021, Accepted 10 May 2022, Published online: 13 Jul 2022

References

  • Abbott, M.B., et al., 1986. An introduction to the European hydrological system—systeme hydrologique Europeen,―SHE, 1: history and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87, 45–59. doi:10.1016/0022-1694(86)90114-9
  • Bhave, A.G., et al., 2018. Water resource planning under future climate and socioeconomic uncertainty in the Cauvery river basin in Karnataka, India. Water Resources Research, 54 (2), 708–728. doi: 10.1002/2017WR020970.
  • Birkinshaw, S.J., et al., 2016. Climate change impacts on Yangtze river discharge at the three gorges dam. Hydrology and Earth System Sciences Discuss, (May), 1–33. doi: 10.5194/hess-2016-231.
  • Blaney, H.F. and Criddle, W.D., 1950. Determining water requirements in irrigated areas from climatological and irrigation data.
  • Bourgeon, G., 1989. Explanatory booklet on the reconnaissance soil map of forest area – Western Karnataka and Goa.
  • Cannon, A.J., 2015. Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices. Journal of Climate, 28 (3), 1260–1267. doi: 10.1175/JCLI-D-14-00636.1.
  • Chen, J., Brissette, F.P., and Lucas-Picher, P., 2016. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology. Climate Dynamics, 47 (9–10), 3359–3372. Springer Berlin Heidelberg. doi: 10.1007/s00382-016-3030-x.
  • Đukić, V. and Erić, R., 2021. SHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka river catchment (Czech Republic). Water, 13 (6), 872. doi: 10.3390/w13060872.
  • Ewen, J., Parkin, G., and O’Connell, P.E., 2000. SHETRAN: distributed river basin flow and transport modeling system. Journal of Hydrologic Engineering, 5 (3), 250–258. doi: 10.1061/(ASCE)1084-0699(2000)5:3(250).
  • FAO, 2012. Harmonized world soil database (version 1.2). FAO.
  • Farjad, B., et al., 2019. A novel approach for selecting extreme climate change scenarios for climate change impact studies. Science of the Total Environment, 678, 476–485. Elsevier B.V. doi: 10.1016/j.scitotenv.2019.04.218.
  • Graham, L.P., et al., 2011. Using multiple climate projections for assessing hydrological response to climate change in the Thukela river basin, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 36 (14–15), 727–735. doi: 10.1016/j.pce.2011.07.084.
  • Haddeland, I., et al., 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 111 (9), 3251–3256. doi: 10.1073/pnas.1222475110.
  • Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: a K-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108. https://doi.org/10.2307/2346830
  • Hengade, N., Eldho, T.I., and Ghosh, S., 2018. Climate change impact assessment of a river basin using CMIP5 climate models and the VIC hydrological model. Hydrological Sciences Journal, 63 (4), 596–614. doi: 10.1080/02626667.2018.1441531.
  • IPCC, 2014. Summary for policymakers, in: climate change 2014 – impacts, adaptation and vulnerability: part A: global and sectoral aspects: working group II contribution to the IPCC fifth assessment report. In: V.R. Barros, et al., eds. Cambridge: Cambridge University Press, 1–32.
  • Jain, S., et al., 2019. Advantage of NEX-GDDP over CMIP5 and CORDEX data : Indian summer monsoon. Atmospheric Research, 228, 152–160. doi:10.1016/j.atmosres.2019.05.026
  • Katsavounidis, I., Kuo, C.C.J., and Zhang, Z., 1994. A new initialization technique for generalized lloyd iteration. IEEE Signal Processing Letters, 1 (10), 144–146. doi: 10.1109/97.329844.
  • Kendall, M.G., 1975. Rank correlation methods. London: Charles Griffin.
  • Knutti, R., 2010. The end of model democracy? Climatic Change, 102, 395–404. doi:10.1007/s10584-010-9800-2
  • Knutti, R., Masson, D., and Gettelman, A., 2013. Climate model genealogy: generation CMIP5 and how we got there. Geophysical Research Letters, 40 (6), 1194–1199. doi: 10.1002/grl.50256.
  • Knutti, R., et al., 2017. A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 44 (4), 1909–1918. doi: 10.1002/2016GL072012.
  • Krishnaswamy, J., et al., 2012. The rain-runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India. Journal of Hydrology, 472–473, 216–237. Elsevier B.V. doi: 10.1016/j.jhydrol.2012.09.016.
  • Krysanova, V., et al., 2017. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide - A synthesis. Environmental Research Letters, 12 (10), 105002. doi: 10.1088/1748-9326/aa8359.
  • Kusangaya, S., et al., 2016. An evaluation of how downscaled climate data represents historical precipitation characteristics beyond the means and variances. Global and Planetary Change, 144, 129–141. Elsevier B.V. doi: 10.1016/j.gloplacha.2016.07.014.
  • Li, H., Sheffield, J., and Wood, E.F., 2010. Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. Journal of Geophysical Research-Atmospheres, 115 (10). doi: 10.1029/2009JD012882.
  • Lorenz, R., et al., 2018. Prospects and caveats of weighting climate models for summer maximum temperature projections over North America. Journal of Geophysical Research: Atmospheres, 123 (9), 4509–4526. doi: 10.1029/2017JD027992.
  • Lutz, A.F., et al., 2016. Selecting representative climate models for climate change impact studies: an advanced envelope‐based selection approach. International Journal of Climatology, 36 (12), 3988–4005. doi: 10.1002/joc.4608.
  • Madhusoodhanan, C.G., Eldho, T.I., and Pai, D.S., 2015. Hydrological impacts of climate change in a humid tropical river basin. In: E-proceedings 36th IAHR World Congr. Netherlands: Hague, 2–5.
  • Madhusoodhanan, C.G., et al., 2018. Can statistical downscaling improve consensus among CMIP5 models for Indian summer monsoon rainfall projections ? International Journal of Climatology, 38 (5), 2449–2461. doi: 10.1002/joc.5352.
  • Mallakpour, I., Sadegh, M., and AghaKouchak, A., 2018. A new normal for streamflow in California in a warming climate: wetter wet seasons and drier dry seasons. Journal of Hydrology, 567, 203–211. doi:10.1016/j.jhydrol.2018.10.023
  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 13, 245–259. doi:10.2307/1907187
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi: 10.13031/2013.23153.
  • Moriasi, D.N., et al., 2012. Hydrologic and water quality models: use, calibration, and validation. Transactions of the ASABE, 55 (4), 1241–1247. doi: 10.13031/2013.42265.
  • Mourato, S., Moreira, M., and Corte-Real, J., 2015. Water resources impact assessment under climate change scenarios in mediterranean watersheds. Water Resources Management, 29 (7), 2377–2391. Springer Netherlands. doi: 10.1007/s11269-015-0947-5.
  • Mudbhatkal, A., et al., 2017. Impacts of climate change on varied river-flow regimes of Southern India. Journal of Hydrologic Engineering, 22 (9), 5017017. doi: 10.1061/(asce)he.1943-5584.0001556.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nel, W. and Sumner, P., 2008. Rainfall and temperature attributes on the Lesotho–Drakensberg escarpment edge, Southern Africa. Geografiska Annaler: Series A, Physical Geography, 90 (1), 97–108. doi: 10.1111/j.1468-0459.2008.00337.x.
  • Ouyang, F., et al., 2015. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment, 29 (7), 1781–1795. Springer Berlin Heidelberg. doi: 10.1007/s00477-014-1018-9.
  • Pandey, A., et al., 2016. Physically based soil erosion and sediment yield models revisited. Catena, 147, 595–620. doi:10.1016/j.catena.2016.08.002
  • Pechlivanidis, I.G., Gupta, H., and Bosshard, T., 2018. An information theory approach to identifying a representative subset of hydro-climatic simulations for impact modeling studies. Water Resources Research, 54 (8), 5422–5435. doi: 10.1029/2017WR022035.
  • Peterson, T., 2005. Climate change indices WMO bull.
  • Putty, M.R.Y. and Prasad, R., 2000. Understanding runoff processes using a watershed model - A case study in the Western Ghats in South India. Journal of Hydrology, 228 (3–4), 215–227. doi: 10.1016/S0022-1694(00)00141-4.
  • Raneesh, K.Y. and Thampi Santosh, G., 2011. A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrological Sciences Journal, 56 (6), 946–965. doi: 10.1080/02626667.2011.595371.
  • Ross, A.C. and Najjar, R.G., 2019. Evaluation of methods for selecting climate models to simulate future hydrological change. Climatic Change, 157 (3–4), 407–428. Climatic Change. doi: 10.1007/s10584-019-02512-8.
  • Rupakumar, K., et al., 2003. Future climate scenarios, and S. Shukla, et al., eds. Climate change and India: vulnerability assessment and adaption. Hyderabad: Universities Press (India) Private Ltd, 69–125.
  • Saha, A., et al., 2014. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophysical Research Letters, 41 (20), 7323–7330. doi: 10.1002/2014GL061573.
  • Sahany, S., Mishra, S.K., and Salunke, P., 2019. Historical simulations and climate change projections over India by NCAR CCSM4: CMIP5 vs. NEX-GDDP. Theoretical and Applied Climatology, 135 (3–4), 1423–1433. Theoretical and Applied Climatology. doi: 10.1007/s00704-018-2455-z.
  • Sanderson, B.M., Knutti, R., and Caldwell, P., 2015. A representative democracy to reduce interdependency in a multimodel ensemble. Journal of Climate, 28, 5171–5194. doi:10.1175/jcli-d-14-00362.1
  • Schulze, R., 2010. Atlas of climate change and the South African agricultural sector: a 2010 perspective. South Africa, Pretoria: Department of Agriculture, Forestry and Fisheries.
  • Scibek, J. and Allen, D.M., 2006. Comparing modelled responses of two high-permeability, unconfined aquifers to predicted climate change. Global and Planetary Change, 50 (1–2), 50–62. doi: 10.1016/j.gloplacha.2005.10.002.
  • Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389. doi:10.1080/01621459.1968.10480934
  • Sharmila, S., et al., 2015. Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global and Planetary Change, 124, 62–78. Elsevier B.V. doi: 10.1016/j.gloplacha.2014.11.004.
  • Shepard, D., 1968. Two- dimensional interpolation function for irregularly- spaced data. In: Proceedings of the 1968 23rd ACM National Conference, 517–524.
  • SHETRAN, 2013. Shetran water flow component equations and algorithms. Available from: http://research.ncl.ac.uk/shetran/water%20flow%20equations.pdf
  • Sinha, R.K., Eldho, T.I., and Subimal, G., 2020a. Assessing the impacts of historical and future land use and climate change on the streamflow and sediment yield of a tropical mountainous river basin in South India. Environmental Monitoring and Assessment, 192 (11), 1–21. doi: 10.1007/s10661-020-08623-5.
  • Sinha, R.K., Eldho, T.I., and Subimal, G., 2020b. Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. International Journal of River Basin Management, 1–12. Taylor & Francis. doi: 10.1080/15715124.2020.1809434.
  • Smith, J. and Hulme, M., 1998. Climate change scenarios, and R. Feenstra, et al., Tol RSJ (eds.) Handbook on methods for climate change impact assessment and adaptation studies Version 2.0. Amsterdam: UNEP/IES, 3–37.
  • Sreedevi, S., et al., 2019. Multiobjective sensitivity analysis and model parameterization approach for coupled streamflow and groundwater table depth simulations using SHETRAN in a wet humid tropical catchment. Journal of Hydrology, 579 (August), 124217. Elsevier. doi: 10.1016/j.jhydrol.2019.124217.
  • Sreedevi, S. and Eldho, T.I., 2019. A two-stage sensitivity analysis for parameter identification and calibration of a physically-based distributed model in a river basin. Hydrological Sciences Journal, 64 (6), 701–719. Taylor & Francis. doi: 10.1080/02626667.2019.1602730.
  • Sreedevi, S. and Eldho, T.I., 2020. Effects of grid-size on effective parameters and model performance of SHETRAN for estimation of streamflow and sediment yield. International Journal of River Basin Management, 1–17. Taylor & Francis. doi: 10.1080/15715124.2020.1767637.
  • Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology, 456, 12–29. doi:10.1016/j.jhydrol.2012.05.052
  • Thrasher, B., et al., 2012. Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16 (9), 3309–3314. doi: 10.5194/hess-16-3309-2012.
  • UNESCO, 2012. World heritage list for Western Ghats. Available from: http://whc.unesco.org/en/list/1342
  • Varikoden, H., et al., 2019. Contrasting trends in southwest monsoon rainfall over the Western Ghats region of India. Climate Dynamics, 52 (7–8), 4557–4566. Springer Berlin Heidelberg. doi: 10.1007/s00382-018-4397-7.
  • Vetter, T., et al., 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141 (3), 419–433. doi: 10.1007/s10584-016-1794-y.
  • Warburton, M.L., Schulze, R.E., and Jewitt, G.P., 2012. Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology, 414, 118–135. doi:10.1016/j.jhydrol.2011.10.028
  • Wicks, J.M. and Bathurst, J.C., 1996. SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175 (1–4), 213–238. doi: 10.1016/S0022-1694(96)80012-6.
  • Wohl, E., et al., 2012. The hydrology of the humid tropics. Nature Climate Change, 2 (9), 655–662. Nature Publishing Group. doi: 10.1038/nclimate1556.
  • Yamamoto, K. and Sayama, T.A., 2021. Impact of climate change on flood inundation in a tropical river basin in Indonesia. Progress in Earth and Planetary Science, 8 (1), 1–15. doi: 10.1186/s40645-020-00386-4.
  • Yuan, S., et al., 2020. Optimizing climate model selection for hydrological modeling: a case study in the Maumee river basin using the SWAT. Journal of Hydrology, 588 (May), 125064. Elsevier. doi: 10.1016/j.jhydrol.2020.125064.
  • Zhang, X., et al., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2 (6), 851–870. doi: 10.1002/wcc.147.
  • Zhang, R., et al., 2019. Downscaling climate change of water availability, sediment yield and extreme events: application to a mediterranean climate basin. International Journal of Climatology, 39 (6), 2947–2963. doi: 10.1002/joc.5994.
  • Zubler, E.M., et al., 2016. Climate change ignals of CMIP5 general circulation models over the Alps – impact of model selection. International Journal of Climatology, 36 (8), 3088–3104. doi: 10.1002/joc.4538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.