237
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effective spatial characteristics of input features through physics-informed machine learning models in inundation forecasting during typhoons

ORCID Icon, , , , &
Pages 1527-1545 | Received 25 Dec 2021, Accepted 10 May 2022, Published online: 19 Jul 2022

References

  • Al-Anazi, A. and Gates, I.D., 2010. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, 114 (3–4), 267–277. doi:10.1016/j.enggeo.2010.05.005
  • Bhola, P.K., Leandro, J., and Disse, M., 2018. Framework for offline flood inundation forecasts for two-dimensional hydrodynamic models. Geosciences, 8 (9), 346. doi:10.3390/geosciences8090346
  • Chang, L.C., et al., 2010. Clustering-based hybrid inundation model for forecasting flood inundation depths. Journal of Hydrology, 385 (1–4), 257–268. doi:10.1016/j.jhydrol.2010.02.028
  • Chang, F.J., et al., 2014a. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 517, 836–846. doi:10.1016/j.jhydrol.2014.06.013
  • Chang, L.C., Shen, H.Y., and Chang, F.J., 2014b. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology, 519, 476–489. doi:10.1016/j.jhydrol.2014.07.036
  • Chen, C.W., et al., 2019. Assessing landslide characteristics in a changing climate in northern Taiwan. Catena, 175, 263–277. doi:10.1016/j.catena.2018.12.023
  • Deb, K., 2001. Multi-objective optimization using evolutionary algorithms. New York: John Wiley.
  • Delft Hydraulics, 2013. SOBEK software user’s manual. Delft, The Netherlands: WL| Delft hydraulics.
  • DeMaria, M., et al., 2014. Is tropical cyclone intensity guidance improving? Bulletin of the American Meteorological Society, 95 (3), 387–398. doi:10.1175/BAMS-D-12-00240.1
  • Doong, D.J., et al., 2016. Development of a new generation of flood inundation maps—A case study of the coastal city of Tainan, Taiwan. Water, 8 (11), 521. doi:10.3390/w8110521
  • Drucker, H., et al., 1996. Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.
  • Fang, H.T., et al., 2019. A two-stage approach integrating SOM-and MOGA-SVM-based algorithms to forecast spatial-temporal groundwater level with meteorological factors. Water Resources Management, 33 (2), 797–818. doi:10.1007/s11269-018-2143-x
  • Hagan, M.T., Demuth, H.B., and Beale, M.H., 1996. Neural network design. Boston, MA: PWS Publishing.
  • Haykin, S., 1994. Neural networks: a comprehensive foundation. New York, NY: MacMillan.
  • Henonin, J., et al., 2013. Real-time urban flood forecasting and modelling–a state of the art. Journal of Hydroinformatics, 15 (3), 717–736. doi:10.2166/hydro.2013.132
  • Ho, S.Y., Shu, L.S., and Chen, J.H., 2004. Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Transactions on Evolutionary Computation, 8 (6), 522–541. doi:10.1109/TEVC.2004.835176
  • Hou, T.H., Su, C.H., and Chang, H.Z., 2008. An integrated multi-objective immune algorithm for optimizing the wire bonding process of integrated circuits. Journal of Intelligent Manufacturing, 19 (3), 361–374. doi:10.1007/s10845-008-0088-2
  • Hsiao, L.F., et al., 2013. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. Journal of Hydrology, 506, 55–68. doi:10.1016/j.jhydrol.2013.08.046
  • Hsiao, L.F., et al., 2015. Blending of global and regional analyses with a spatial filter: application to typhoon prediction over the western North Pacific Ocean. Weather and Forecasting, 30 (3), 754–770. doi:10.1175/WAF-D-14-00047.1
  • Huang, C.C., et al., 2019. Interdisciplinary application of numerical and machine-learning-based models to predict half-hourly suspended sediment concentrations during typhoons. Journal of Hydrology, 573, 661–675. doi:10.1016/j.jhydrol.2019.04.001
  • Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
  • Jhong, B.C., Wang, J.H., and Lin, G.F., 2016. Improving the long lead-time inundation forecasts using effective typhoon characteristics. Water Resources Management, 30 (12), 4247–4271. doi:10.1007/s11269-016-1418-3
  • Jhong, B.C., Wang, J.H., and Lin, G.F., 2017. An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. Journal of Hydrology, 547, 236–252. doi:10.1016/j.jhydrol.2017.01.057
  • Kuntiyawichai, K., et al., 2011. Comparison of flood management options for the Yang River Basin, Thailand. Irrigation and Drainage, 60 (4), 526–543. doi:10.1002/ird.596
  • Lee, J.H., et al., 2020. Integrated flood forecasting and warning system against flash rainfall in the small-scaled urban stream. Atmosphere, 11 (9), 971. doi:10.3390/atmos11090971
  • Lin, G.F., et al., 2009. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research, 45 (8). doi:10.1029/2009WR007911
  • Lin, G.F., Lin, H.Y., and Chou, Y.C., 2013. Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics, 15 (4), 1391–1407. doi:10.2166/hydro.2013.202
  • Lin, G.F. and Jhong, B.C., 2015. A real-time forecasting model for the spatial distribution of typhoon rainfall. Journal of Hydrology, 521, 302–313. doi:10.1016/j.jhydrol.2014.12.009
  • Liong, S.Y. and Sivapragasam, C., 2002. Flood stage forecasting with support vector machines 1. JAWRA Journal of the American Water Resources Association, 38 (1), 173–186. doi:10.1111/j.1752-1688.2002.tb01544.x
  • Mamdani, E.H., December 1974. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineersd, 121(12), 1585–1588. IET doi:10.1049/piee.1974.0328
  • Marinos, P.N., 1969. Fuzzy logic and its application to switching systems. IEEE Transactions on Computers, 100 (4), 343–348. doi:10.1109/T-C.1969.222662
  • Ouyang, H.T., 2017. Characteristics of recursive and non-recursive adaptive network-based fuzzy inference system models for the forecast of typhoon inundation levels. International Journal of Environmental Science and Technology, 14 (11), 2495–2506. doi:10.1007/s13762-017-1336-9
  • Pan, T.Y., et al., 2011. Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database. Natural Hazards and Earth System Sciences, 11 (3), 771. doi:10.5194/nhess-11-771-2011
  • Pan, T.Y., et al., 2012. Risk analysis for casualties of flood disaster: a case study of Tainan City. Journal of Taiwan Agricultural Engineering, 58 (4), 95–110.
  • Pan, T.Y., et al., 2014. Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation. Natural Hazards, 70 (3), 1763–1793. doi:10.1007/s11069-011-0061-9
  • Prinsen, G.F. and Becker, B.P.J., 2011. Application of SOBEK hydraulic surface water models in the Netherlands hydrological modelling instrument. Irrigation and Drainage, 60, 35–41. doi:10.1002/ird.665
  • René, J.R., et al., 2014. Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability. Urban Water Journal, 11 (7), 573–583. doi:10.1080/1573062X.2013.795237
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by back-propagating errors. Nature, 323 (6088), 533–536. doi:10.1038/323533a0
  • Shen, H.Y. and Chang, L.C., 2013. Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrology and Earth System Sciences, 17 (3), 935–945. doi:10.5194/hess-17-935-2013
  • Tabari, H., et al., 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444, 78–89. doi:10.1016/j.jhydrol.2012.04.007
  • Teng, H.F., et al., 2020. Dependence of probabilistic quantitative precipitation forecast performance on typhoon characteristics and forecast track error in Taiwan. Weather and Forecasting, 35 (2), 585–607. doi:10.1175/WAF-D-19-0175.1
  • Tsai, Y.F., Chan, C.H., and Chang, C.H., 2015. Setting up the critical rainfall line for debris flows via support vector machines. Natural Hazards and Earth System Sciences Discussions, 3 (10), 5957–5975.
  • Vapnik, V., 1995. The nature of statistical learning theory. New York: Springer.
  • Vapnik, V., Golowich, S.E., and Smola, A.J., 1996. Support vector method for function approximation, regression estimation and signal processing. In: M.C. Mozer, M. Jordan and T. Petsche eds. Advances in Neural Information Processing Systems, 9, 281–287.
  • Versini, P.A., 2012. Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. Journal of Hydrology, 416, 157–170. doi:10.1016/j.jhydrol.2011.11.048
  • Verwey, A., et al., 2008. Implementing an urban rainfall-runoff concept in SOBEK for a Catchment in Singapore. In: Proceedings of water down under 2008, Singapore., 36.
  • Wu, C.L., Chau, K.W., and Li, Y.S., 2008. River stage prediction based on a distributed support vector regression. Journal of Hydrology, 358 (1–2), 96–111. doi:10.1016/j.jhydrol.2008.05.028
  • Yadav, A. and Satyannarayana, P., 2020. Multi-objective genetic algorithm optimization of artificial neural network for estimating suspended sediment yield in Mahanadi River basin, India. International Journal of River Basin Management, 18 (2), 207–215. doi:10.1080/15715124.2019.1705317
  • Yang, S.Y., et al., 2018. The damage assessment of flood risk transfer effect on surrounding areas arising from the land development in Tainan, Taiwan. Water, 10 (4), 473. doi:10.3390/w10040473
  • Yoon, S.S., 2019. Adaptive blending method of radar-based and numerical weather prediction QPFs for urban flood forecasting. Remote Sensing, 11 (6), 642. doi:10.3390/rs11060642
  • Yu, P.S., Chen, S.T., and Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328 (3–4), 704–716. doi:10.1016/j.jhydrol.2006.01.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.