3,569
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parameterizing the JULES land surface model for different land covers in the tropical Andes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1516-1526 | Received 02 Jun 2021, Accepted 17 May 2022, Published online: 05 Aug 2022

References

  • Best, M.J., et al., 2011. The joint UK land environment simulator (JULES), model description–Part 1: energy and water fluxes. Geoscientific Model Development, 4 (3), 677–699. doi:10.5194/gmd-4-677-2011
  • Blyth, E.M., Martinez-de la Torre, A., and Robinson, E.L., 2019. Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015. Progress in Physical Geography: Earth and Environment, 43 (5), 666–693. doi:10.1177/0309133319841891
  • Boongaling, C.G.K., Faustino-Eslava, D.V., and Lansigan, F.P., 2018. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: the case of an ungauged catchment in the Philippines. Land Use Policy, 72, 116–128. doi:10.1016/j.landusepol.2017.12.042
  • Buytaert, W., 2004. The properties of the soils of the south Ecuadorian páramo and the impact of land use changes on their hydrology. Doctoral dissertation. Katholieke Universiteit Leuven.
  • Buytaert, W., et al., 2005. The effect of land‐use changes on the hydrological behaviour of Histic Andosols in south Ecuador. Hydrological Processes: An International Journal, 19 (20), 3985–3997. doi:10.1002/hyp.5867
  • Buytaert, W., et al., 2006. Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79 (1–2), 53–72. doi:10.1016/j.earscirev.2006.06.002
  • Buytaert, W. and Beven, K., 2011. Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 25 (11), 1784–1799. doi:10.1002/hyp.7936
  • Buytaert, W., et al., 2014. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science, 2, 26. doi:10.3389/feart.2014.00026.
  • Célleri, R. and Feyen, J., 2009. The hydrology of tropical Andean ecosystems: importance, knowledge status, and perspectives. Mountain Research and Development, 29 (4), 350–356. doi:10.1659/mrd.00007
  • Célleri, R., et al., 2009. Understanding the hydrology of tropical Andean ecosystems through an Andean Network of Basins. IAHS-AISH Publication, 336, 209–212.
  • Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13 (5), 701–714. doi:10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
  • Clark, D.B. and Gedney, N., 2008. Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model. Journal of Geophysical Research: Atmospheres, 113 (D10). doi:10.1029/2007JD008940
  • Clark, D.B., et al., 2011. The Joint UK Land Environment Simulator (JULES), model description–Part 2: carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4 (3), 701–722. doi:10.5194/gmd-4-701-2011
  • Coffey, M.E., et al., 2004. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Transactions of the ASAE, 47 (1), 59. doi:10.13031/2013.15870
  • Cosby, B.J., et al., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20 (6), 682–690. doi:10.1029/WR020i006p00682
  • Cox, P.M., et al., 1999. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 15 (3), 183–203. doi:10.1007/s003820050276
  • Crespo, P.J., et al., 2011. Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador). Journal of Hydrology, 407 (1–4), 164–174. doi:10.1016/j.jhydrol.2011.07.021
  • Dharssi, I. et al., 2009. New soil physical properties implemented in the Unified Model at PS18, Met Office Technical Report 528.
  • Dos Santos, F.M., de Oliveira, R.P., and Mauad, F.F., 2020. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê river basin, São Paulo, Brazil. Journal of Hydrology: Regional Studies, 29, 100685.
  • FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized world soil database (version 1.2). FAO, Rome, Italy.
  • Harden, C.P., 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology, 79 (3–4), 249–263. doi:10.1016/j.geomorph.2006.06.021
  • Harper, A.B., et al., 2018. Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4. 6 with new plant functional types. Geoscientific Model Development, 11 (7), 2857–2873. doi:10.5194/gmd-11-2857-2018
  • Hengl, T., et al., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12 (2), e0169748. doi:10.1371/journal.pone.0169748
  • Heuvelmans, G., Muys, B., and Feyen, J., 2004. Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Physics and Chemistry of the Earth, Parts a/B/C, 29 (11–12), 739–747. doi:10.1016/j.pce.2004.05.002
  • Hodnett, M.G. and Tomasella, J., 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma, 108 (3–4), 155–180. doi:10.1016/S0016-7061(02)00105-2
  • Kanamitsu, M., et al., 2002. NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83 (11), 1631–1643. doi:10.1175/BAMS-83-11-1631(2002)0832.3.CO;2
  • Le Vine, N., et al., 2016. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin. Hydrology and Earth System Sciences, 20 (1), 143–159. doi:10.5194/hess-20-143-2016
  • Marthews, T.R., et al., 2014. High-resolution hydraulic parameter maps for surface soils in tropical South America. Geoscientific Model Development, 7 (3), 711–723. doi:10.5194/gmd-7-711-2014
  • Martínez-de la Torre, A., Blyth, E.M., and Weedon, G.P., 2019. Using observed river flow data to improve the hydrological functioning of the JULES land surface model (vn4. 3) used for regional coupled modelling in Great Britain (UKC2). Geoscientific Model Development, 12 (2), 765–784. doi:10.5194/gmd-12-765-2019
  • McIntyre, N., et al., 2014. Modelling the hydrological impacts of rural land use change. Hydrology Research, 45 (6), 737–754. doi:10.2166/nh.2013.145
  • Moore, R.J., 1985. The probability-distributed principle and runoff production at point and basin scales. Hydrological Sciences Journal, 30 (2), 273–297. doi:10.1080/02626668509490989
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mosquera, G.M., et al., 2020. Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: a wet layered sloping sponge. Hydrological Processes, 34 (9), 2032–2047. doi:10.1002/hyp.13733
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nejadhashemi, A.P., Wardynski, B.J., and Munoz, J.D., 2012. Large-scale hydrologic modeling of the Michigan and Wisconsin agricultural regions to study impacts of land use changes. Transactions of the ASABE, 55 (3), 821–838. doi:10.13031/2013.41517
  • Ochoa-Tocachi, B.F., et al., 2018. High-resolution hydrometeorological data from a network of headwater catchments in the tropical Andes. Scientific Data, 5, 180080. doi:10.1038/sdata.2018.80
  • Ochoa‐Tocachi, B.F., et al., 2016. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrological Processes, 30 (22), 4074–4089.
  • Olden, J.D. and Poff, N.L., 2003. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19 (2), 101–121. doi:10.1002/rra.700
  • Ortiz, E. and Peralvo, M., 2013. Restauración de áreas degradadas de páramo a pequeña escala y diseño de un plan piloto de manejo adaptativo para zonas de amortiguamiento dentro de las microcuencas Antisana y Pita en áreas de aporte a los sistemas de agua potable del Distrito Metropolitano de Quito. Quito: CONDESAN.
  • Rodriguez, D.A. and Tomasella, J., 2016. On the ability of large-scale hydrological models to simulate land use and land cover change impacts in Amazonian basins. Hydrological Sciences Journal, 61 (10), 1831–1846.
  • Tomasella, J. and Hodnett, M.G., 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science, 163 (3), 190–202. doi:10.1097/00010694-199803000-00003
  • Tsarouchi, G. and Buytaert, W., 2018. Land-use change may exacerbate climate change impactson water resources in the Ganges basin. Hydrology and Earth System Sciences, 22 (2), 1411–1435. doi:10.5194/hess-22-1411-2018
  • Turner, B.L., Meyer, W.B., and Skole, D.L., 1994. Global land-use/land-cover change: towards an integrated study. Ambio.Stockholm, 23 (1), 91–95.
  • Van Genuchten, M.T., 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44 (5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.
  • Zulkafli, Z., et al., 2013. A critical assessment of the JULES land surface model hydrology for humid tropical environments. Hydrology and Earth System Sciences, 17 (3), 1113–1132. doi:10.5194/hess-17-1113-2013