2,573
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Augmenting a socio-hydrological flood risk model for companies with process-oriented loss estimation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1623-1639 | Received 23 Nov 2021, Accepted 27 May 2022, Published online: 05 Aug 2022

References

  • Abebe, Y.A., et al., 2019. A coupled flood-agent-institution modelling (CLAIM) framework for urban flood risk management. Environmental Modelling & Software, 111 (February), 483–492. doi:10.1016/j.envsoft.2018.10.015
  • Barendrecht, M.H., Viglione, A., and Blöschl, G., 2017. A dynamic framework for flood risk. Water Security, 1, 3–11. doi:10.1016/j.wasec.2017.02.001
  • Barendrecht, M.H., et al., 2019. The value of empirical data for estimating the parameters of a sociohydrological flood risk model. Water Resources Research, 55 (2), 1312–1336. doi:10.1029/2018WR024128
  • Blair, P. and Buytaert, W., 2016. Socio-hydrological modelling: a review asking “why, what and how? Hydrology and Earth System Sciences, 20 (1), 443–478. doi:10.5194/hess-20-443-2016
  • Bubeck, P., et al., 2018. Insights into flood-coping appraisals of protection motivation theory: empirical evidence from Germany and France. Risk Analysis, 38 (6), 1239–1257. doi:10.1111/risa.12938
  • Bubeck, P., et al., 2020. Using panel data to understand the dynamics of human behavior in response to flooding. Risk Analysis, 40 (11), 2340–2359. doi:10.1111/risa.13548
  • Bürkner, P.C., 2017. Brms: an R package for bayesian multilevel models using stan. Journal of Statistical Software, 80 (1). doi:10.18637/jss.v080.i01
  • Carpenter, B., et al., 2017. Stan: a probabilistic programming language. Journal of Statistical Software, 76 (1). doi:10.18637/jss.v076.i01.
  • Ciullo, A., et al., 2017. Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrological Sciences Journal, 62 (6), 880–891. doi:10.1080/02626667.2016.1273527
  • Coates, G., et al., 2014. Agent-based modelling and inundation prediction to enable the identification of businesses affected by flooding. WIT Transactions on Ecology and the Environment, 184, 13–22. doi:10.2495/FRIAR140021
  • Coates, G., et al., 2019. Agent-based modeling and simulation to assess flood preparedness and recovery of manufacturing small and medium-sized enterprises. Engineering Applications of Artificial Intelligence, 78 (November 2018), 195–217. doi:10.1016/j.engappai.2018.11.010
  • Delignette-Muller, M.L. and Dutang, C., 2015. fitdistrplus : an R package for fitting distributions. Journal of Statistical Software, 64 (4), 1–34. doi:10.18637/jss.v064.i04
  • Devkota, R., et al., 2020. Assessing the past and adapting to future floods: a hydro-social analysis. Climatic Change, 163 (2), 1065–1082. doi:10.1007/s10584-020-02909-w
  • Di Baldassarre, G., et al., 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17 (8), 3295–3303. doi:10.5194/hess-17-3295-2013
  • Di Baldassarre, G., et al., 2015. Debates-Perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resources Research, 51 (6), 4770–4781. doi:10.1002/2014WR016416
  • Di Baldassarre, G., et al., 2017. Drought and flood in the anthropocene: feedback mechanisms in reservoir operation. Earth System Dynamics, 8 (1), 225–233. doi:10.5194/esd-8-225-2017
  • Eurostat, 2008. NACE Rev. 2 – Statistical classification of economic activities in the European Community. Luxembourg, Office for Official Publications of the European Communities. Available from: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-07-015 [Accessed 24 July 2022].
  • Federal Dam Operation Authority of Saxony, 2013. Neue Hochwasserschutzanlagen retten Dresden [online]. Available from: https://www.medienservice.sachsen.de/medien/news/184938 [Accessed 24 July 2022].
  • Ferrari, S. and Cribari-Neto, F., 2004. Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31 (7), 799–815. doi:10.1080/0266476042000214501
  • Gabry, J., et al., 2019. Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182 (2), 389–402. doi:10.1111/rssa.12378
  • Gelman, A., et al., 2013. Bayesian data analysis. 3rd. Chapman and Hall/CRC. doi:10.1201/b16018 [Accessed 24 July 2022].
  • Gelman, A., et al., 2020. Bayesian Workflow. Available from: http://arxiv.org/abs/2011.01808 [Accessed 24 July 2022].
  • Gerl, T., et al., 2016. A review of flood loss models as basis for harmonization and benchmarking. PLOS ONE, 11 (7), e0159791. doi:10.1371/journal.pone.0159791
  • German Federal Institute of Hydrology (BfG), 2021. Global Runoff Data Centre [online]. Available from: https://www.bafg.de/GRDC/ [Accessed 24 July 2022].
  • GFZ German Research Centre for Geosciences, 2021. HOWAS21. 10.1594/GFZ.SDDB.HOWAS21.
  • Gneiting, T. and Katzfuss, M., 2014. Probabilistic Forecasting. Annual Review of Statistics and Its Application, 1 (1), 125–151. doi:10.1146/annurev-statistics-062713-085831
  • Grames, J., et al., 2016. Modeling the interaction between flooding events and economic growth. Ecological Economics, 129, 193–209. doi:10.1016/j.ecolecon.2016.06.014
  • Grothmann, T. and Reusswig, F., 2006. People at risk of flooding: why some residents take precautionary action while others do not. Natural Hazards, 38 (1–2), 101–120. doi:10.1007/s11069-005-8604-6
  • Gruner, T., 2012. WebGIS-basierte Visualisierung der Flächennutzungsentwicklung der Stadtregion Dresden auf Grundlage von MapServer. HTW Dresden. Available from: http://maps.ioer.de/FNDD2/ [Accessed 24 July 2022].
  • Haeffner, M. and Hellman, D., 2020. The social geometry of collaborative flood risk management: a hydrosocial case study of Tillamook County, Oregon. Natural Hazards, 103 (3), 3303–3325. doi:10.1007/s11069-020-04131-4
  • Haer, T., et al., 2017. Integrating household risk mitigation behavior in flood risk analysis: an agent-based model approach. Risk Analysis, 37 (10), 1977–1992. doi:10.1111/risa.12740
  • Haer, T., Botzen, W.J.W., and Aerts, J.C.J.H., 2019. Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach. Environmental Research Letters, 14 (4), 044022. doi:10.1088/1748-9326/ab0770
  • Haer, T., et al., 2020. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 60 (December 2018), 102009. doi:10.1016/j.gloenvcha.2019.102009
  • Hasanzadeh Nafari, R., Ngo, T., and Mendis, P., 2016. An assessment of the effectiveness of tree-based models for multi-variate flood damage assessment in Australia. Water, 8 (7), 282. doi:10.3390/w8070282
  • Hipsey, M.R., et al., 2015. Predicting the resilience and recovery of aquatic systems: a framework for model evolution within environmental observatories. Water Resources Research, 51 (9), 7023–7043. doi:10.1002/2015WR017175
  • Hoffman, M.D. and Gelman, A., 2014. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15, 1593–1623. Available from: https://jmlr.org/papers/v15/hoffman14a.html [Accessed 24 July 2022].
  • Hosking, J.R.M., 1990. L-Moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B (Methodological), 52 (1), 105–124. doi:10.1111/j.2517-6161.1990.tb01775.x
  • Ishtiaque, A., Sangwan, N., and Yu, D.J., 2017. Robust-yet-fragile nature of partly engineered social-ecological systems: a case study of coastal Bangladesh. Ecology and Society, 22 (3). doi:10.5751/ES-09186-220305
  • Jehmlich, C., Hudson, P., and Thieken, A.H., 2020. Short contribution on adaptive behaviour of flood-prone companies: a pilot study of Dresden-Laubegast, Germany. Journal of Flood Risk Management, 13 (4), 1–7. doi:10.1111/jfr3.12653
  • Jordan, A., Krüger, F., and Lerch, S., 2019. Evaluating probabilistic forecasts with scoringRules. Journal of Statistical Software, 90 (12). doi:10.18637/jss.v090.i12.
  • Kienzler, S., et al., 2015. After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011. Natural Hazards and Earth System Sciences, 15 (3), 505–526. doi:10.5194/nhess-15-505–2015.
  • Kreibich, H., et al., 2005. Flood loss reduction of private households due to building precautionary measures – lessons learned from the Elbe flood in August 2002. Natural Hazards and Earth System Sciences, 5 (1), 117–126. doi:10.5194/nhess-5-117–2005.
  • Kreibich, H., et al., 2007. Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resources Research, 43 (3), 1–15. doi:10.1029/2005WR004691
  • Kreibich, H. and Thieken, A.H., 2009. Coping with floods in the city of Dresden, Germany. Natural Hazards, 51 (3), 423–436. doi:10.1007/s11069-007-9200-8
  • Kreibich, H., et al., 2010. Development of FLEMOcs – a new model for the estimation of flood losses in the commercial sector. Hydrological Sciences Journal, 55 (8), 1302–1314. doi:10.1080/02626667.2010.529815
  • Kreibich, H., et al., 2017. Adaptation to flood risk: results of international paired flood event studies. Earth’s Future, 5 (10), 953–965. doi:10.1002/2017EF000606
  • Kron, W., 2005. Flood Risk = Hazard • Values • Vulnerability. Water International, 30 (1), 58–68. doi:10.1080/02508060508691837
  • Krüger, F., et al., 2016. Predictive Inference Based on Markov Chain Monte Carlo Output, 23–24. Available from: http://arxiv.org/abs/1608.06802 [Accessed 24 July 2022].
  • Li, C. and Coates, G., 2016. Design and development of an agent-based model for business operations faced with flood disruption. International Journal of Design & Nature and Ecodynamics, 11 (2), 97–106. 10.2495/DNE-V11-N2-97–106.
  • Maier, M.J., 2014. DirichletReg: Dirichlet Regression for Compositional Data in R. Available from: http://epub.wu.ac.at/4077/ [Accessed 24 July 2022].
  • Marks, D., 2019. Assembling the 2011 Thailand floods: protecting farmers and inundating high-value industrial estates in a fragmented hydro-social territory. Political Geography, 68 (August 2017), 66–76. doi:10.1016/j.polgeo.2018.10.002
  • Matheson, J.E. and Winkler, R.L., 1976. Scoring rules for continuous probability distributions. Management Science, 22 (10), 1087–1096. doi:10.1287/mnsc.22.10.1087
  • McElreath, R., 2018. Statistical rethinking. Boca Raton, FL: Chapman and Hall/CRC. doi:10.1201/9781315372495
  • Merz, B., et al., 2010a. Fluvial flood risk management in a changing world. Natural Hazards and Earth System Science, 10 (3), 509–527. doi:10.5194/nhess-10-509-2010
  • Merz, B., et al., 2010b. Review article ‘Assessment of economic flood damage’. Natural Hazards and Earth System Science, 10 (8), 1697–1724. doi:10.5194/nhess-10-1697-2010
  • Merz, B., et al., 2015. Charting unknown waters-On the role of surprise in flood risk assessment and management. Water Resources Research, 51 (8), 6399–6416. doi:10.1002/2015WR017464
  • O’Connell, P.E. and O’Donnell, G., 2014. Towards modelling flood protection investment as a coupled human and natural system. Hydrology and Earth System Sciences, 18 (1), 155–171. doi:10.5194/hess-18-155-2014
  • Ospina, R. and Ferrari, S.L.P., 2010. Inflated beta distributions. Statistical Papers, 51 (1), 111–126. doi:10.1007/s00362-008-0125-4
  • Paprotny, D., Morales-Nápoles, O., and Jonkman, S.N., 2018. HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870. Earth System Science Data, 10 (1), 565–581. doi:10.5194/essd-10-565-2018
  • Paprotny, D., et al., 2020. Exposure and vulnerability estimation for modelling flood losses to commercial assets in Europe. Science of the Total Environment, 737, 140011. doi:10.1016/j.scitotenv.2020.140011
  • Pohl, R., 2004. Historische Hochwasser aus dem Erzgebirge: von der Gottleuba bis zur Mulde. Dresden: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.
  • Ridolfi, E., Albrecht, F., and Di Baldassarre, G., 2020. Exploring the role of risk perception in influencing flood losses over time. Hydrological Sciences Journal, 65 (1), 12–20. doi:10.1080/02626667.2019.1677907
  • Ridolfi, E., Mondino, E., and Di Baldassarre, G., 2021. Hydrological risk: modeling flood memory and human proximity to rivers. Hydrology Research, 52 (1), 241–252. doi:10.2166/nh.2020.195
  • Rosina, K., et al., 2020. Increasing the detail of European land use/cover data by combining heterogeneous data sets. International Journal of Digital Earth, 13 (5), 602–626. doi:10.1080/17538947.2018.1550119
  • Ross, A. and Chang, H., 2020. Socio-hydrology with hydrosocial theory: two sides of the same coin? Hydrological Sciences Journal, 65 (9), 1443–1457. doi:10.1080/02626667.2020.1761023
  • Rözer, V., et al., 2019. Probabilistic models significantly reduce uncertainty in hurricane harvey pluvial flood loss estimates. Earth’s Future, 7 (4), 384–394. doi:10.1029/2018EF001074
  • Saxonian Environmental Agency, 2012. Flood Hazard Maps for Saxony [Dataset] [online]. Available from: https://www.wasser.sachsen.de/hochwassergefahrenkarte-11915.html [Accessed 24 July 2022].
  • Saxonian Relief Bank, 2007. SAB-Förderbericht 2006 − Wirtschaft, Technologie, Arbeit. Dresden. Available from: https://www.sab.sachsen.de/publikationen/förderbericht/förderbericht-2006.pdf [Accessed 24 July 2022].
  • Schoppa, L., et al., 2020. Probabilistic flood loss models for companies. Water Resources Research, 56 (9). doi:10.1029/2020WR027649
  • Sennhenn-Reulen, H., 2018. Bayesian regression for a dirichlet distributed response using stan. arXiv, 1, 1–13. Available from: http://arxiv.org/abs/1808.06399 [Accessed 24 July 2022]
  • Sieg, T., et al., 2017. Tree-based flood damage modeling of companies: damage processes and model performance. Water Resources Research, 53 (7), 6050–6068. doi:10.1002/2017WR020784
  • Sieg, T., et al., 2019. Seamless estimation of hydrometeorological risk across spatial scales. Earth’s Future, 7 (5). doi:10.1029/2018EF001122
  • Sivapalan, M., Savenije, H.H.G., and Blöschl, G., 2012. Socio-hydrology: a new science of people and water. Hydrological Processes, 26 (8), 1270–1276. doi:10.1002/hyp.8426
  • Sivapalan, M., et al., 2014. Socio‐hydrology: use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2 (4), 225–230. doi:10.1002/2013ef000164
  • Sivapalan, M. and Blöschl, G., 2015. Time scale interactions and the coevolution of humans and water. Water Resources Research, 51 (9), 6988–7022. doi:10.1002/2015WR017896
  • Song, S., Chen, H., and Wang, Y., 2021. Improving representation of collective memory in socio- hydrological models and new insights into flood risk management. Journal of Flood Risk Management, 14 (1), 1–12. doi:10.1111/jfr3.12679.
  • Srinivasan, V., et al., 2017. Prediction in a socio-hydrological world. Hydrological Sciences Journal, 62 (3), 338–345. doi:10.1080/02626667.2016.1253844
  • Thieken, A.H., et al., 2007. Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrological Sciences Journal, 52 (5), 1016–1037. doi:10.1623/hysj.52.5.1016
  • Thieken, A.H., et al., 2016. The flood of June 2013 in Germany: how much do we know about its impacts? Natural Hazards and Earth System Sciences, 16 (6), 1519–1540. doi:10.5194/nhess-16-1519-2016
  • Thompson, S.E., et al., 2013. Developing predictive insight into changing water systems: use-inspired hydrologic science for the anthropocene. Hydrology and Earth System Sciences, 17 (12), 5013–5039. doi:10.5194/hess-17-5013-2013
  • van de Schoot, R., et al., 2021. Bayesian statistics and modelling. Nature Reviews Methods Primers, 1 (1), 1. doi:10.1038/s43586-020-00001-2
  • Viglione, A., et al., 2014. Insights from socio-hydrology modelling on dealing with flood risk - Roles of collective memory, risk-taking attitude and trust. Journal of Hydrology, 518 (PA), 71–82. doi:10.1016/j.jhydrol.2014.01.018
  • Vogel, K., et al., 2018. Identifying driving factors in flood-damaging processes using graphical models. Water Resources Research, 54 (11), 8864–8889. doi:10.1029/2018WR022858
  • Wagenaar, D., De Jong, J., and Bouwer, L.M., 2017. Multi-variable flood damage modelling with limited data using supervised learning approaches. Natural Hazards and Earth System Sciences, 17 (9), 1683–1696. doi:10.5194/nhess-17-1683-2017
  • Wedawatta, G. and Ingirige, B., 2012. Resilience and adaptation of small and medium-sized enterprises to flood risk. Disaster Prevention and Management: An International Journal, 21 (4), 474–488. doi:10.1108/09653561211256170
  • Wedawatta, G., Ingirige, B., and Proverbs, D., 2014. Small businesses and flood impacts: the case of the 2009 flood event in Cockermouth. Journal of Flood Risk Management, 7 (1), 42–53. doi:10.1111/jfr3.12031
  • Weikinn, C., 2000. Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850 - Hydrographie Band 1, Teil 5 (1751-1800). Stuttgart, Germany, Schweizerbart Science Publishers. Available from: http://www.schweizerbart.de//publications/detail/isbn/9783443010447/Weikinn%5C_Quellentexte%5C_zur%5C_Witterungsgesc [Accessed 24 July 2022].
  • Weikinn, C., 2002. Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850 - Hydrographie Band 1, Teil 6 (1801-1850). Stuttgart, Germany, Schweizerbart Science Publishers. Available from: http://www.schweizerbart.de//publications/detail/isbn/9783443010478/Weikinn%5C_Quellentexte%5C_zur%5C_Witterungsgesc [Accessed 24 July 2022].
  • Wing, O.E.J., et al., 2020. New insights into US flood vulnerability revealed from flood insurance big data. Nature Communications, 11 (1), 1–10. doi:10.1038/s41467-020-15264-2
  • Yu, D.J., et al., 2017. Incorporating institutions and collective action into a sociohydrological model of flood resilience. Water Resources Research, 53 (2), 1336–1353. doi:10.1002/2016WR019746