275
Views
3
CrossRef citations to date
0
Altmetric
Research Article

River sensing: the inclusion of red band in predicting reach-scale types using machine learning algorithms

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1740-1754 | Received 23 Jul 2021, Accepted 10 Jun 2022, Published online: 15 Aug 2022

References

  • Adeyemi, O., Olutoyin, F., and Olumide, O., 2020. Downstream hydraulic geometry across headwater channels in Upper Ogun River Basin, Southwestern Nigeria. African Geographical Review, 39 (4), 345–360. doi:10.1080/19376812.2020.1720756
  • Adeyemi, O.O. and Faniran, A., 2020. Lithology and channel network initiation and orientation: a case study of Upper Ogun River Basin, Southwestern Nigeria. In: Proceedings of geomorphometry conference, Virtual, Italy. 22–26.
  • Agapiou, A., 2020. Evaluation of landsat 8 OLI/TIRS level-2 and sentinel 2 level-1C fusion techniques intended for image segmentation of archaeological landscapes and proxies. Remote Sensing, 12 (3), 579. doi:10.3390/rs12030579
  • Alaoui, A., et al., 2011. A preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone Journal, 10 (1), 367–377. doi:10.2136/vzj2010.0076
  • Awoniran, D.R., et al., 2014. Assessment of environmental responses to land use/land cover dynamics in the Lower Ogun River Basin, Southwestern Nigeria. African Journal of Environmental Science and Technology, 8 (2), 152–165. doi:10.5897/AJEST2013.1607
  • Bizzi, S. and Lerner, D.N., 2012. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes. Geomorphology, 169-170, 64–73. doi:10.1016/j.geomorph.2012.04.009
  • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123–140. doi:10.1007/BF00058655
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324
  • Bridges, C.C., Jr, 1966. Hierarchical cluster analysis. Psychological Reports, 18 (3), 851–854. doi:10.2466/pr0.1966.18.3.851
  • Brierley, G., Fryirs, K., and Jain, V., 2006. Landscape connectivity: the geographic basis of geomorphic applications. Area, 38 (2), 165–174. doi:10.1111/j.1475-4762.2006.00671.x
  • Buffington, J.M. and Montgomery, D.R., 2013. Geomorphic classification of rivers. In: J. Shroder and E. Wohl, eds. Treatise on Geomorphology; Fluvial Geomorphology. San Diego, CA: Academic Press, 730–767.
  • Buscombe, D. and Ritchie, A.C., 2018. Landscape classification with deep neural networks. Geosciences, 8 (7), 244. doi:10.3390/geosciences8070244
  • Chardon, V., et al., 2020. Use of terrestrial photosieving and airborne topographic LiDAR to assess bed grain size in large rivers: a study on the Rhine River. Earth Surface Processes and Landforms, 45 (10), 2314–2330. doi:10.1002/esp.4882
  • Chen, T. and Guestrin, C., 2016, August. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco California, USA. 785–794.
  • De Cortes, J.P.S., et al., 2021. A statistical-based reach scale classification for the lower Tapajós river channel, eastern Amazonia. Progress in Physical Geography: Earth and Environment, 45 (4), 600–620.
  • Eaton, B.C. and Church, M., 2011. A rational sediment transport scaling relation based on dimensionless stream power. Earth Surface Processes and Landforms, 36 (7), 901–910. doi:10.1002/esp.2120
  • Erskine, W., Saynor, M., and Lowry, J., 2017. Application of a new river classification scheme to Australia’s tropical rivers. Singapore Journal of Tropical Geography, 38 (2), 167–184. doi: 10.1111/sjtg.12196
  • Faniran, A., 1982. African landforms. Nigeria: Heinemann.
  • Faniran, A., et al., 2021. Essentials of geomorphology. 2nd Edn. Nigeria: Penthouse Publications.
  • Freund, Y. and Schapire, R.E., 1996. Experiments with a new boosting algorithm. Icml, 96 July, 148–156.
  • Friedman, J.H., 1991. Multivariate adaptive regression splines. The Annals of Statistics, 19 (1), 1–67.
  • Fryirs, K. and Brierley, G., 2005. Practical applications of the river styles framework as a tool for catchment-wide river management: a case study from bega catchment, NSW, Australia. Auckland: Macquire University.
  • Gilvear, D.J., Bryant, R., and Hardy, T., 1999. Remote sensing of channel morphology and in-stream fluvial processes. Progress in Environmental Science, 1, 257–284.
  • Gilvear, D. and Bryant, R., 2016. Analysis of remotely sensed data for fluvial geomorphology and river science. Tools in Fluvial Geomorphology, 103–132.
  • Gippel, C.J. and Stewardson, M.J., 1998. Use of wetted perimeter in defining minimum environmental flows. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 14 (1), 53–67.
  • Gurnell, A., Surian, N., and Zanoni, L., 2009. Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sciences, 71 (3), 253–265. doi:10.1007/s00027-009-9186-2
  • Hayakawa, Y.S. and Oguchi, T., 2006. DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology, 78 (1–2), 90–106. doi:10.1016/j.geomorph.2006.01.018
  • Hearst, M.A., et al., 1998. Support vector machines. IEEE Intelligent Systems and Their Applications, 13 (4), 18–28. doi:10.1109/5254.708428
  • Howard, A.D. 1998. Long profile development of bedrock channels: interaction of weathering, mass wasting, bed erosion and sediment transport. In: K.J. Tinkler and E.E. Wohl, eds. Rivers over rock, fluvial processes in bedrock channels. Geophysical monograph. Washington, DC: American Geophysical Union, Vol. 107, 297–319.
  • Jain, S.K. and Singh, V.P., 2003. Water resources systems planning and management. The Netherlands: Elsevier.
  • Jain, P., et al., 2020. A review of machine learning applications in wildfire science and management. Environmental Reviews, 28 (4), 478–505. doi:10.1139/er-2020-0019
  • Jenson, S.K. and Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54 (11), 1593–1600.
  • Kasprak, A., et al., 2016. The blurred line between form and process: a comparison of stream channel classification frameworks. PloS one, 11 (3), e0150293. doi:10.1371/journal.pone.0150293
  • Kisi, O. and Parmar, K.S., 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. Journal of Hydrology, 534, 104–112. doi:10.1016/j.jhydrol.2015.12.014
  • Kuhn, M., 2008. Building predictive models in R using the caret package. Journal of Statistical Software, 28 (5), 1–26. doi:10.18637/jss.v028.i05
  • Lane, B.A., et al., 2017. The role of topographic variability in river channel classification. Progress in Physical Geography, 41 (5), 570–600. doi:10.1177/0309133317718133
  • Legleiter, C.J., et al., 2004. Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility. Remote Sensing of Environment, 93 (4), 493–510. doi:10.1016/j.rse.2004.07.019
  • Legleiter, C.J., 2012. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surface Processes and Landforms, 37 (5), 499–518. doi:10.1002/esp.2262
  • Legleiter, C.J., et al., 2016. Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments. Earth Surface Processes and Landforms, 41 (3), 344–363. doi:10.1002/esp.3794
  • Li, D., et al., 2021. River extraction under bankfull discharge conditions based on sentinel-2 imagery and DEM data. Remote Sensing, 13 (14), 2650. doi:10.3390/rs13142650
  • Mackey, P.C., Barlow, P.M., and Ries, K.G., 1998. Relations between discharge and wetted perimeter and other hydraulic-geometry characteristics at selected streamflow-gaging stations in Massachusetts. US Department of the Interior, US Geological Survey, Vol. 98, 4094.
  • Madhuri, R., Sistla, S., and Srinivasa Raju, K., 2021. Application of machine learning algorithms for flood susceptibility assessment and risk management. Journal of Water and Climate Change, 12 (6), 2608–2623. doi:10.2166/wcc.2021.051
  • Makaske, B., 2001. Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Science Reviews, 53 (3–4), 149–196. doi:10.1016/S0012-8252(00)00038-6
  • Marcus, W.A. and Fonstad, M.A., 2010. Remote sensing of rivers: the emergence of a subdiscipline in the river sciences. Earth Surface Processes and Landforms, 35 (15), 1867–1872. doi:10.1002/esp.2094
  • Montgomery, D.R. and Buffington, J.M., 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5), 596–611. doi:10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
  • Ni, L., et al., 2020. Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. Journal of Hydrology, 586, 124901. doi:10.1016/j.jhydrol.2020.124901
  • Olusola, A.O., 2019. Process-from dynamics of the Upper Ogun River Basin, Southwestern Nigeria. Ph.D. Thesis. Nigeria: University of Ibadan.
  • Olusola, A., et al., 2020. Morphologic and hydraulic variability of small bedrock and alluvial channels in relation to lithological controls, Upper Ogun River Basin, Southwestern Nigeria. Physical Geography, 41 (6), 537–557. doi:10.1080/02723646.2020.1764168
  • Olusola, A.O. and Faniran, A., 2020. Lithology and channel network initiation and orientation: a case study of Upper Ogun River Basin, Southwestern Nigeria. In: M. Alvioli, et al., eds. Geomorphometry conference, 22-26 June 2020. Perugia, Italy, 247–250.
  • Pasternack, G.B., et al., 2018. Hierarchically nested river landform sequences. Part 2: bankfull channel morphodynamics governed by valley nesting structure. Earth Surface Processes and Landforms, 43 (12), 2519–2532. doi:10.1002/esp.4410
  • Piégay, H., et al., 2020. Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 45 (1), 157–188. doi:10.1002/esp.4787
  • Piryonesi, S.M. and El-Diraby, T.E., 2020. Role of data analytics in infrastructure asset management: overcoming data size and quality problems. Journal of Transportation Engineering, Part B: Pavements, 146 (2).
  • Reinfelds I, Cohen T, Batten P, Brierley G 2004. Assessment of downstream trends in channel gradient, total and specific stream power: a GIS approach. Geomorphology. 60 (3-4):403–16.
  • Ritchie, J.C. and Cooper, C.M., 1991. An algorithm for estimating surface suspended sediment concentrations with landsat mss digital data. JAWRA Journal of the American Water Resources Association, 27 (3), 373–379. doi:10.1111/j.1752-1688.1991.tb01436.x
  • Roper, B.B., et al., 2008. The role of observer variation in determining rosgen stream types in Northeastern Oregon mountain streams 1. JAWRA Journal of the American Water Resources Association, 44 (2), 417–427. doi:10.1111/j.1752-1688.2008.00171.x
  • Rosgen, D.L., 1994. A classification of natural rivers. Catena, 22 (3), 169–199. doi:10.1016/0341-8162(94)90001-9
  • Schwenk, H. and Bengio, Y., 1997. Adaptive boosting of neural networks for character recognition. Advances in Neural Information Processing, 10.
  • Simon, A., et al., 2007. Critical evaluation of how the Rosgen classification and associated “natural channel design” methods fail to integrate and quantify fluvial processes and channel response 1. JAWRA Journal of the American Water Resources Association, 43 (5), 1117–1131. doi:10.1111/j.1752-1688.2007.00091.x
  • Stumpf, A. and Kerle, N., 2011. Object-oriented mapping of landslides using random forests. Remote Sensing of Environment, 115 (10), 2564–2577. doi:10.1016/j.rse.2011.05.013
  • Van Niekerk, A.W., Heritage, G.L., and Moon, B.P., 1995. River classification for management: the geomorphology of the Sabie River in the eastern Transvaal. South African Geographical Journal, 77 (2), 68–76. doi:10.1080/03736245.1995.9713594
  • Vapnik, V., 2013. The nature of statistical learning theory. New York, USA: Springer science & business media.
  • Vermote, E., et al., 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. doi:10.1016/j.rse.2016.04.008
  • Vertessy, R.A., 2001. Impacts of plantation forestry on catchment runoff. In: Plantations, Farm Forestry and Water: Workshop Proceedings Publication, Australia (No. 01/20, pp. 9–19).
  • Volpe, V., Silvestri, S., and Marani, M., 2011. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sensing of Environment, 115 (1), 44–54. doi:10.1016/j.rse.2010.07.013
  • Wang, J.J., et al., 2009. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and Landforms, 34 (8), 1082–1092. doi:10.1002/esp.1795
  • Whiting, P.J. and Bradley, J.B., 1993. A process‐based classification system for headwater streams. Earth Surface Processes and Landforms, 18 (7), 603–612. doi:10.1002/esp.3290180704
  • Wohl, E. and Merritt, D., 2005. Prediction of mountain stream morphology. Water Resources Research, 41 (8), 1–10. doi:10.1029/2004WR003779
  • Woodget, A.S., Fyffe, C., and Carbonneau, P.E., 2018. From manned to unmanned aircraft: adapting airborne particle size mapping methodologies to the characteristics of sUAS and SfM. Earth Surface Processes and Landforms, 43 (4), 857–870. doi:10.1002/esp.4285
  • Wyrick, J.R. and Pasternack, G.B., 2014a. Geospatial organization of fluvial landforms in a gravel–cobble river: beyond the riffle–pool couplet. Geomorphology, 213, 48–65. doi:10.1016/j.geomorph.2013.12.040
  • Wyrick, J.R., Senter, A.E., and Pasternack, G.B., 2014b. Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms. Geomorphology, 210, 14–22. doi:10.1016/j.geomorph.2013.12.013
  • Wyrick, J.R. and Pasternack, G.B., 2016. Revealing the natural complexity of topographic change processes through repeat surveys and decision‐tree classification. Earth Surface Processes and Landforms, 41 (6), 723–737. doi:10.1002/esp.3854
  • Zhang, H.K. and Roy, D.P., 2016. Computationally inexpensive Landsat 8 operational land imager (OLI) pansharpening. Remote Sensing, 8 (3), 180. doi:10.3390/rs8030180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.