331
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrology of peat estimated from near-surface water contents

, , , &
Pages 1702-1721 | Received 14 Nov 2021, Accepted 10 Jun 2022, Published online: 12 Aug 2022

References

  • Agro API, n.d. Available from: https://agromonitoring.com/
  • Arroyo-Mora, J., et al., 2018. Airborne hyperspectral evaluation of maximum gross photosynthesis, gravimetric water content, and CO2 uptake efficiency of the Mer Bleue ombrotrophic Peatland. Remote Sensing, 10 (4), 565. doi:10.3390/rs10040565
  • Baird, A.J., 1997. Field estimation of macropore functioning and surface hydraulic conductivity in a fen peat. Hydrological Processes, 11 (3), 287–295. doi:10.1002/(SICI)1099-1085(19970315)11:3<287::AID-HYP443>3.0.CO;2-L
  • Braverman, M., 2017. Impact of linear disturbances on a discontinuous Permafrost Peatland Environment. Theses and Dissertations (Comprehensive), 1915. https://scholars.wlu.ca/etd/1915
  • Bubier, J., et al., 2003. Spatial and temporal variability in growing season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems, 6, 353–367.
  • Champagne, C., et al., 2015. Satellite surface soil moisture from SMOS and Aquarius: assessment for applications in agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation, 45 (B), 143–154. doi:10.1016/j.jag.2015.09.004
  • Clymo, R.S., 1983. Peat. In: A.J.P. Gore, ed. Ecosystems of the World. Mires: Swamp, Bog, Fen and Moor General Studies, Elsevier, NY, Vol. 4A, 159–224.
  • Devoie, E.G. et al., 2019. Taliks: a tipping point in discontinuous permafrost degradation in peatlands. Water Resources Research, 55 (11), 9838–9857. doi:10.1029/2018WR024488
  • Dimitrov, D.D., et al., 2010a. Modelling subsurface hydrology of Mer Bleue bog. Soil Science Society of America Journal, 74 (2), 680–694. doi:10.2136/sssaj2009.0148
  • Dimitrov, D.D., et al., 2010b. Modelling the effects of hydrology on ecosystem respiration at Mer Bleue bog. Journal of Geophysical Research - Biogeosciences, 115 (G4), G04043. doi:10.1029/2010JG001312
  • Dimitrov, D.D., Bhatti, J.S., and Grant, R.F., 2014. The transition zones (ecotone) between boreal forests and peatlands: ecological controls on ecosystem productivity along a transition zone between upland black spruce forest and a poor forested fen in central Saskatchewan. Ecological Modelling, 291, 96–108. doi:10.1016/j.ecolmodel.2014.07.020
  • Dimitrov, D.D. and Lafleur, P.M., 2020. Revisiting water retention curves for simple hydrological modelling of peat. Hydrological Sciences Journal, doi:10.1080/02626667.2020.1853132
  • Dimitrov, D.D. and Lafleur, P.M., 2021. From ecological models to modelling platforms: bridging science, scientific programming, and web application development. (poster) 7th Open Science Meeting, North American Caron Program (NACP), March 2021, Session Linkages among the Air-Land-Water Continuum.https://cce-datasharing.gsfc.nasa.gov/files/conference_presentations/Poster_Dimitrov__266_21.pdf
  • Fenner, N. and Freeman, C., 2011. Drought-induced carbon loss in peatlands. Nature Geoscience, 4 (12), 895–900. doi:10.1038/ngeo1323
  • Fraser, C.J.D., 1999. The hydrology and dissolved organic carbon (DOC) biogeochemistry in a boreal peatland. Thesis (MSc), McGill University.
  • Freeze, R.A. and Cherry, J.A., 1979. Groundwater. 9780133653120. OCLC 252025686. Englewood Cliffs, NJ: Prentice-Hall.
  • Frolking, S. and Crill, P.M., 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochemical Cycles, 8 (4), 385–397. doi:10.1029/94GB01839
  • Frolking, S., et al., 2002. Modelling the seasonal to annual carbon balance of Mer Bleue bog, Ontario, Canada. Global Biogeochemical Cycles, 16 (3), 1030. doi:10.1029/2001GB001457
  • Gao, B.-C., 1996. NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58 (3), 257–266. doi:10.1016/S0034-4257(96)00067-3
  • GBIF, n.d. Available from: https://www.gbif.org/
  • Goldstein, A., et al., 2020. Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change, 10 (4), 287–295. doi:10.1038/s41558-020-0738-8
  • Grant, R.F., 2001. A review of the Canadian ecosystem model ECOSYS. In: M. Shaffer, ed. Modeling carbon and nitrogen dynamics for soil management. Boca Raton, FL: CRC Press, 173–264.
  • Hayness, K.M., et al., 2020. The role of hummocks in re-establishing black spruce forest following permafrost thaw. Ecohydrology, 14 (3), e2273. doi:10.1002/eco.2273
  • Holden, J., 2009. Flow through macropores of different size classes in blanket peat. Journal of Hydrology, 364 (3 – 4), 342–348. doi:10.1016/j.jhydrol.2008.11.010
  • Jansson, P.-E., 1991. Simulation Model for soil water and heat conditions. Swedish University of Agricultural Sciences, Uppsala, Report 165.
  • Jansson, P.-E., 1998. Simulating model for soil water and heat conditions. Description of the SOIL model. Swedish. Uppsala, : University of Agricultural Sciences, 0282–6569.
  • Johannessen, O.M., et al., 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus Series A: Dynamic Meteorology and Oceanography, 56 (4), 328–341. doi:10.3402/tellusa.v56i4.14418
  • Jorgenson, M.T., et al., 2010. Resilience and vulnerability of permafrost to climate change. Canadian Journal for Forest Research, 40 (7), 1219–1236. doi:10.1139/X10-060
  • Kalacska, M., et al., 2018. Estimating peatland water table depth and net ecosystem exchange: a comparison between satellite and airborne imagery. Remote Sensing, 10(5), 687. License. CC BY 4.0. doi:10.3390/rs10050687.
  • Krause, P., Boyle, D.P., and Base, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005
  • Kurylyk, B.L., et al., 2016. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resources Research, 52 (2), 1286–1305. doi:10.1002/2015WR018057
  • Lafleur, P.M., Roulet, N.T., and Admiral, S.W., 2001. Annual cycle of CO 2 exchange at a bog peatland. Journal of Geophysical Research, 106 (D3), 3071–3081. doi:10.1029/2000JD900588
  • Lafleur, P.M., et al., 2003. Interannual variability in the peatland‐atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17 (2), 1036. doi:10.1029/2002GB001983
  • Lafleur, P.M., et al., 2005a. Ecosystem respiration in a cool temperate bog depends on peat temperature but not on water table. Ecosystems, 8 (6), 619–629. doi:10.1007/s10021-003-0131-2
  • Lafleur, P.M., et al., 2005b. Annual and seasonal variability in evapotranspiration and water table at a shrub‐covered bog in southern Ontario, Canada. Hydrological Processes, 19 (18), 3533–3550. doi:10.1002/hyp.5842
  • Lalonde, M., 2013. The Hyperspectral Determination of Sphagnum Water Content in a Bog. Master’s Thesis, McGill University, Montreal, QC, Canada.
  • Lees, K.J., et al., 2018. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – a review. Science of the Total Environment, 615, 857–874. doi:10.1016/j.scitotenv.2017.09.103
  • Letts, M.G., et al., 2000. Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmosphere-Ocean, 38 (1), 141–160. doi:10.1080/07055900.2000.9649643
  • Loisel, J., et al., 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24 (9), 1028–1042. doi:10.1177/0959683614538073
  • Maltby, E. and Immirzi, P., 1993. Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere, 27 (6), 999–1023. doi:10.1016/0045-6535(93)90065-D
  • Meingast, K.M., et al., 2014. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sensing of Environment, 152, 536–546. doi:10.1016/j.rse.2014.07.014
  • Mezbahuddin, M., Grant, R.F., and Flanagan, L.B., 2016. Modelling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal Western Canadian fen peatland. Journal of Geophysical Research - Biogeosciences, 121 (8), 2216–2242. doi:10.1002/2016JG003501
  • Moore, T.R., et al., 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90 (1), 25–36. doi:10.1046/j.0022-0477.2001.00633.x
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Motovilov, Y.G., et al., 1999. Validation of distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98-99, 257–277. doi:10.1016/S0168-1923(99)00102-1
  • Nosent, J. and Bauwens, W., 2012. Application of normalized Nash – sutcliffe efficiency to improve the accuracy of the Sobol sensitivity analysis of a hydrological model. EGUGA, 237. Biocode. EGUGA 14.237N
  • OpenWeather, n.d. Available from: https://openweathermap.org/
  • Quinton, W.L. and Gray, D.M., 2003. Subsurface drainage from organic soils in permafrost terrain: the major factors to be represented in a runoff model. Proceedings of the 8th International Conference on Permafrost, Davos, Switzerland, 6 pp.
  • Quinton, W. and Hayashi, M., 2004. The flow and storage of water in the wetland-dominated central Mackenzie river basin: recent advances and future directions. Prediction in Ungauged Basins: Approaches for Canada’s Cold Regions, Canadian Water Resources Association, 45–66.
  • Quinton, W.L., Carey, S.K., and Pomeroy, J.W., 2005. Soil water storage and active-layer development in a sub-alpine tundra hillslope, southern Yukon Territory, Canada. Permafrost Periglacial Process, 16 (4), 369–382. doi:10.1002/ppp.543
  • Quinton, W.L. and Baltzer, J.L., 2013. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeology Journal, 21 (1), 201–220. doi:10.1007/s10040-012-0935-2
  • Quinton, W., et al., 2019. A synthesis of three decades of hydrological research at Scotty Creek, NWT. Canada. Hydrology and Earth System Sciences, 23 (4), 1–25. doi:10.5194/hess-23-1-2019
  • Ramanarayanan, T.S., et al., 1997. Using APEX to identify alternative practices for animal waste management. ASAE Paper No. 972209. St. Josepth, Mich: ASAE.
  • Reeve, A.S., Siegel, D.I., and Glaser, P.H., 2000. Simulating vertical flow in large peatlands. Journal of Hydrology, 227 (1–4), 207–217. doi:10.1016/S0022-1694(99)00183-3
  • Ritter, A. and Munoz-Carpena, R., 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
  • Ritter, A. and Munoz-Carpena, R., 2020. FITEVAL [online]. University of Florida, IFAS Research. https://abe.ufl.edu/faculty/carpena/software/FITEVAL.shtml
  • Shi, X., et al., 2015. Representing northern peatland microtopography and hydrology within the community land model. Biogeoscience, 12 (21), 6453–6477. doi:10.5194/bg-12-6463-2015
  • SoilGrid REST, n.d. Available from: https://rest.isric.org/
  • Sonnentag, O., et al., 2008. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: influence of mesoscale topography. Journal of Geophysical Research – Biogeosciences, 113 (G2). doi:10.1029/2007JG000605
  • Strack, M., et al., 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. Journal of Geophysical Research, 111 (G2), G02006. doi:10.1029/2005JG000145
  • Sulman, B.N., et al., 2009. Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests. Biogeosciences, 6 (6), 1115–1126. doi:10.5194/bg-6-1115-2009
  • Talbot, J., et al., 2014. Increases in abovefround biomass and leaf area 85 years after drainage in a bog. Botany, 92 (10), 713–721. doi:10.1139/cjb-2013-0319
  • Thien, S.J. and Graveel, J.G., 2003. Laboratory manual for soil science: agricultural & environmental principles. Preliminary. Dubuque, Iowa 52002: Kendall/Hunt Publishing Company.
  • Wallage, Z.E. and Holden, J., 2011. Near-surface macropore flow and saturated hydraulic conductivity in drained and restored blanket peatlands. Soil Use and Management, 27 (2), 247–254. doi:10.1111/j.1475-2743.2011.00336.x
  • Wang, J., Lee, W.F., and Ling, P.P., 2020. Estimation of thermal diffusivity for greenhouse soil temperature simulation. Applied Sciences, 10 (2), 653. doi:10.3390/app10020653
  • Weber, T.K.D., Iden, S.C., and Durner, W., 2017. A pore-size classification for peat bogs derived from unsaturated hydraulic properties. Hydrology and Earth System Sciences, 21 (12), 6185–6200. doi:10.5194/hess-21-6185-2017
  • Weiss, R., et al., 2006. Simulation of water table level and peat temperatures in boreal peatlands. Ecological Modelling, 192 (3–4), 441–456. doi:10.1016/j.ecolmodel.2005.07.016
  • Willmott, C.J., 1981. On the validation of models. Physical Geography, 2 (2), 184–194. doi:10.1080/02723646.1981.10642213
  • Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63 (11), 1309–1313. doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
  • Wright, N., Hayashi, M., and Quinton, W.L., 2009. Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resources Research, 45 (5), W05414. doi:10.1029/2008WR006880
  • Xu, J., et al., 2018. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena, 160, 134–140. doi:10.1016/j.catena.2017.09.010
  • Yu, Z.C., et al., 2003. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene, 13 (6), 801–808. doi:10.1191/0959683603hl667ft
  • Yu, Z.C., 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9 (10), 4071–4085. doi:10.5194/bg-9-4071-2012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.