518
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Sequential downscaling of GRACE products to map groundwater level changes in Krishna River basin

&
Pages 1846-1859 | Received 14 Apr 2022, Accepted 08 Jul 2022, Published online: 19 Aug 2022

References

  • Abdi, H. and Williams, L.J., 2010. Principal component analysis: principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2 (4), 433–459. doi:10.1002/wics.101
  • Badiani, R. and Jessoe, K., 2012. The impact of electricity subsidies on groundwater extraction and agricultural production, 41.
  • Bhanja, S.N., et al., 2016. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. Journal of Hydrology, 543, 729–738. doi:10.1016/j.jhydrol.2016.10.042
  • Bhanja, S.N., et al., 2017. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Reports, 7 (1), 7453. doi:10.1038/s41598-017-07058-2
  • Bhanja, S.N., Mukherjee, A., and Rodell, M., 2020. Groundwater storage change detection from in situ and GRACE-based estimates in major river basins across India. Hydrological Sciences Journal, 65 (4), 650–659. doi:10.1080/02626667.2020.1716238
  • Chanapathi, T., Thatikonda, S., and Raghavan, S., 2018. Analysis of rainfall extremes and water yield of Krishna river basin under future climate scenarios. Journal of Hydrology: Regional Studies, 19, 287–306.
  • Chaudhary, S., Agarwal, A., and Nakamura, T., 2019. Rainfall projection in Yamuna River Basin, India, using statistical downscaling. In: Water Resources and Environmental Engineering II. Singapore: Springer, 15–23.
  • Chen, J., et al., 2014. Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116, 130–138. doi:10.1016/j.gloplacha.2014.02.007
  • Chen, L., et al., 2019. Downscaling of GRACE-derived groundwater storage based on the random forest model. Remote Sensing, 11 (24), 2979. doi:10.3390/rs11242979
  • Chen, Z. et al., 2021. Spatiotemporal characteristics and estimates of extreme precipitation in the Yangtze River Basin using GLDAS data. International Journal of Climatology, 41, E1812–E1830. doi:10.1002/joc.6813
  • Dhawan, V., 2017. Water and agriculture in India: background paper for the South Asia expert panel during the Global Forum for Food and Agriculture - (GFFA) 2017. OAV - German Asia-Pacific Business Association, 1–25. https://www.oav.de/fileadmin/user_upload/5_Publikationen/5_Studien/170118_Study_Water_Agriculture_India.pdf
  • Dutt Vishwakarma, B., Devaraju, B., and Sneeuw, N., 2016. Minimizing the effects of filtering on catchment scale GRACE solutions: minimizing signal degradation due to filtering of grace. Water Resources Research, 52 (8), 5868–5890. doi:10.1002/2016WR018960
  • Eicker, A., et al., 2014. Calibration/data assimilation approach for integrating GRACE data into the Watergap Global Hydrology Model (WGHM) using an ensemble Kalman filter: first results. Surveys in Geophysics, 35 (6), 1285–1309. doi:10.1007/s10712-014-9309-8
  • Famiglietti, J.S., et al., 2011. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38 (3), 2010GL046442. doi:10.1029/2010GL046442
  • Famiglietti, J.S. and Rodell, M., 2013. Water in the balance. Science, 340 (6138), 1300–1301. doi:10.1126/science.1236460
  • Fienen, M.N. and Arshad, M., 2016. The international scale of the groundwater issue. In Integrated Groundwater Management. Springer, Cham, 21–48.
  • Flechtner, F., 2007. Gravity recovery and climate experiment AOD1B product description document for product releases 01 to 04. GFZ Publications, 750(GR-GFZ-AOD-0001). https://www.gfz-potsdam.de/fileadmin/gfz/sec12/pdf/GRACE/AOD1B/AOD1B_20070413.pdf
  • Frappart, F., et al., 2008. Interannual variations of river water storage from a multiple satellite approach: a case study for the Rio Negro River basin. Journal of Geophysical Research, 113 (D21), D21104. doi:10.1029/2007JD009438
  • Gleick, P.H., 1993. Water in crisis. Vol. 100, New York: Oxford University Press.
  • Graves, A., Mohamed, A., and Hinton, G., 2013. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Presented at the ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada: IEEE, 6645–6649.
  • Ground Water Year Book. September, 102. http://cgwb.gov.in/Regions/GW-year-Books/GWYB-2015-16/GWYBDelhi2015-16.pdf
  • Heuvelmans, G., Muys, B., and Feyen, J., 2006. Regionalisation of the parameters of a hydrological model: comparison of linear regression models with artificial neural nets. Journal of Hydrology, 319 (1–4), 245–265. doi:10.1016/j.jhydrol.2005.07.030
  • Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Hosseini-Moghari, S.-M., et al., 2019. Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations. Ecological Indicators, 101, 465–475. doi:10.1016/j.ecolind.2019.01.002
  • Houborg, R., et al., 2010. Using enhanced GRACE water storage data to improve drought detection by the U.S. and North American drought monitors. In: 2010 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA: IEEE, 710–713.
  • Inapakurthi, R.K., Miriyala, S.S., and Mitra, K., 2021. Deep learning based dynamic behavior modelling and prediction of particulate matter in air. Chemical Engineering Journal, 426, 131221. doi:10.1016/j.cej.2021.131221
  • Jakeman, A.J., et al., eds., 2016. Integrated groundwater management: concepts, approaches and challenges. Cham: Springer International Publishing.
  • Ji, L., Senay, G.B., and Verdin, J.P., 2015. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products. Journal of Hydrometeorology, 16 (6), 2463–2480. doi:10.1175/JHM-D-14-0230.1
  • Jyolsna, P.J., Kambhammettu, B.V.N.P., and Gorugantula, S., 2021. Application of random forest and multi-linear regression methods in downscaling GRACE derived groundwater storage changes. Hydrological Sciences Journal, 66 (5), 874–887. doi:10.1080/02626667.2021.1896719
  • King, M., et al., 2006. Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry. Geophysical Journal International, 166 (1), 1–11. doi:10.1111/j.1365-246X.2006.03017.x
  • Kumar, K.S., et al., 2021. Monthly and seasonal drought characterization using grace-based groundwater drought index and its link to teleconnections across south indian river basins. Climate, 9 (4). doi:10.3390/cli9040056
  • Longuevergne, L., Scanlon, B.R., and Wilson, C.R., 2010. GRACE hydrological estimates for small basins: evaluating processing approaches on the high plains Aquifer, USA: grace hydrological estimates for small B. Water Resources Research, 46 (11). doi:10.1029/2009WR008564
  • Mahajan, D.R. and Dodamani, B.M., 2015. Trend analysis of drought events over upper Krishna Basin in Maharashtra. Aquatic Procedia, 4, 1250–1257. doi:10.1016/j.aqpro.2015.02.163
  • Margat, J. and Gun, J.V.D., 2013. Groundwater around the World: A Geographic Synopsis. 1st ed. CRC Press. doi:10.1201/b13977.
  • Masterson, J.P. and Garabedian, S.P., 2007. Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water, 45 (2), 209–217. doi:10.1111/j.1745-6584.2006.00279.x
  • McCuen, R.H., Knight, Z., and Cutter, A.G., 2006. Evaluation of the Nash–Sutcliffe efficiency index. Journal of Hydrologic Engineering, 11 (6), 597–602. doi:10.1061/(ASCE)1084-0699(2006)11:6(597)
  • Milewski, T., Seyoum, and Rasmussen, 2019. Spatial downscaling of GRACE TWSA data to identify spatiotemporal groundwater level trends in the upper Floridan Aquifer, Georgia, USA. Remote Sensing, 11 (23), 2756. doi:10.3390/rs11232756
  • Miro, M. and Famiglietti, J., 2018. Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s Central Valley. Remote Sensing, 10 (1), 143. doi:10.3390/rs10010143
  • Mishra, S.P., et al., 2017. Multivariate statistical data analysis-principal component analysis (PCA). International Journal of Livestock Research, 7 (5), 60–78.
  • Misra, S., Sarkar, S., and Mitra, P., 2018. Statistical downscaling of precipitation using long short-term memory recurrent neural networks. Theoretical and Applied Climatology, 134 (3–4), 1179–1196. doi:10.1007/s00704-017-2307-2
  • Panda, D.K. and Wahr, J., 2016. Spatiotemporal evolution of water storage changes in India from the updated GRACE ‐derived gravity records. Water Resources Research, 52 (1), 135–149. doi:10.1002/2015WR017797
  • Rahaman, M., et al., 2019. Estimating high-resolution groundwater storage from GRACE: a random forest approach. Environments, 6 (6), 63. doi:10.3390/environments6060063
  • Rodell, M., Velicogna, I., and Famiglietti, J.S., 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460 (7258), 999–1002. doi:10.1038/nature08238
  • Sachindra, D.A., et al., 2018. Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240–258. doi:10.1016/j.atmosres.2018.05.022
  • Sadeghi, B., et al., 2020. The characterization of fine particulate matter downwind of Houston: using integrated factor analysis to identify anthropogenic and natural sources. Environmental Pollution, 262, 114345. doi:10.1016/j.envpol.2020.114345
  • Sahour, H., et al., 2020. Statistical applications to downscale GRACE-derived terrestrial water storage data and to fill temporal gaps. Remote Sensing, 12 (3), 533. doi:10.3390/rs12030533
  • Save, H., Bettadpur, S., and Tapley, B.D., 2016. High-resolution CSR GRACE RL05 mascons: high-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121 (10), 7547–7569. doi:10.1002/2016JB013007
  • Scanlon, B.R., et al., 2016. Global evaluation of new GRACE mascon products for hydrologic applications: global analysis of GRACE mascon products. Water Resources Research, 52 (12), 9412–9429. doi:10.1002/2016WR019494
  • Schumacher, M., et al., 2018. Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sensing of Environment, 204, 212–228. doi:10.1016/j.rse.2017.10.029
  • Seyoum, W., Kwon, D., and Milewski, A., 2019. Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system. Remote Sensing, 11 (7), 824. doi:10.3390/rs11070824
  • Siebert, S., et al., 2010. Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences, 14 (10), 1863–1880. doi:10.5194/hess-14-1863-2010
  • Strobl, C., et al., 2008. Conditional variable importance for random forests. BMC Bioinformatics, 9 (1), 1–11. doi:10.1186/1471-2105-9-307
  • Sutskever, I., Vinyals, O., and Le, Q.V., 2014. Sequence to sequence learning with neural networks, 9.
  • Swenson, S. and Wahr, J., 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33 (8), L08402. doi:10.1029/2005GL025285
  • Tangdamrongsub, N., et al., 2018. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China Plain. Remote Sensing, 10 (3), 483. doi:10.3390/rs10030483
  • Tapley, B.D., et al., 2004. The gravity recovery and climate experiment: mission overview and early results: GRACE mission overview and early results. Geophysical Research Letters, 31 (9), n/a–n/a. doi:10.1029/2004GL019920
  • Taylor, C.J. and Alley, W.M., 2002. Ground-water-level monitoring and the importance of long-term water-level data ( No. 1217-2002). US Department of the Interior, US Geological Survey. Ground Water. 2001 Nov-Dec; 39 (6), 801. PMID: 11708445. doi:10.1111/j.1745-6584.2001.tb02466.x
  • Tiwari, V.M., Wahr, J., and Swenson, S., 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36 (18), L18401. doi:10.1029/2009GL039401
  • Vishwakarma, B.D., Zhang, J., and Sneeuw, N., 2021. Downscaling GRACE total water storage change using partial least squares regression. Scientific Data, 8 (1), 95. doi:10.1038/s41597-021-00862-6
  • Wahr, J., Molenaar, M., and Bryan, F., 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103 (B12), 30205–30229. doi:10.1029/98JB02844
  • Wahr, J., Swenson, S., and Velicogna, I., 2006. Accuracy of GRACE mass estimates. Geophysical Research Letters, 33 (6), L06401. doi:10.1029/2005GL025305
  • Wang, W., et al., 2016a. Evaluation of GLDAS-1 and GLDAS-2 forcing data and noah model simulations over China at the monthly scale. Journal of Hydrometeorology, 17 (11), 2815–2833. doi:10.1175/JHM-D-15-0191.1
  • Wang, Q., et al., 2020. Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data. Journal of Hydrology, 586, 124875. doi:10.1016/j.jhydrol.2020.124875
  • Wei, H., et al., 2013. Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation: improvement of the Noah LSM for warm season processes. Hydrological Processes, 27 (2), 297–303. doi:10.1002/hyp.9214
  • Wold, S., Esbensen, K., and Geladi, P., 1987. Principal component analysis, 16.
  • Xie, Y., et al., 2018. GRACE-based terrestrial water storage in Northwest China: changes and causes. Remote Sensing, 10 (7), 1163. doi:10.3390/rs10071163
  • Yi, C., Shin, Y., and Roh, J.W., 2018. Development of an urban high-resolution air temperature forecast system for local weather information services based on statistical downscaling. Atmosphere, 9 (5), 164. doi:10.3390/atmos9050164
  • Yin, W., et al., 2018. Statistical downscaling of GRACE-derived groundwater storage using ET data in the North China Plain. Journal of Geophysical Research: Atmospheres, 123 (11), 5973–5987. doi:10.1029/2017JD027468
  • Zaitchik, B.F., Rodell, M., and Reichle, R.H., 2008. Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. Journal of Hydrometeorology, 9 (3), 535–548. doi:10.1175/2007JHM951.1
  • Zhang, Y., et al., 2019. Differences in response of terrestrial water storage components to precipitation over 168 Global River Basins. Journal of Hydrometeorology, 20 (9), 1981–1999. doi:10.1175/JHM-D-18-0253.1
  • Zhang, J., Liu, K., and Wang, M., 2021. Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods. Remote Sensing, 13 (3), 523. doi:10.3390/rs13030523

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.