374
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Assessment of enhanced Kohonen self-organizing map, quantile mapping and copula-based bias-correction approaches for constructing basin-scale rainfall forecasts

ORCID Icon, ORCID Icon &
Pages 1860-1875 | Received 19 Mar 2022, Accepted 04 Jul 2022, Published online: 25 Aug 2022

References

  • Abebe, S.A., et al., 2020. Spatial and temporal evaluation of the latest high-resolution precipitation products over the upper blue nile river basin, Ethiopia. Water, 12 (11), 3072. doi:10.3390/w12113072
  • Adeloye, A.J., Rustum, R., and Kariyama, I.D., 2011. Kohonen self‐organizing map estimator for the reference crop evapotranspiration. Water Resources Research, 47 (8). doi:10.1029/2011WR010690
  • Akima, H., 1978. A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software (TOMS), 4 (2), 148–159. doi:10.1145/355780.355786
  • Akima, H., 1996. Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic polynomial. ACM Transactions on Mathematical Software (TOMS), 22 (3), 362–371. doi:10.1145/232826.232856
  • Back, B., Sere, K., and Vanharanta, H., 1996. Data mining accounting numbers using self-organizing maps. STeP, 96, 35–47.
  • Balogun, I.A., Balogun, R.A., and Ademola, T., 2018. Rainfall comparison from different precipitation estimates over West Africa. Atmospheric and Climate Sciences, 8 (1), 15. doi:10.4236/acs.2018.81002
  • Ben Alaya, M.A., Chebana, F., and Ouarda, T.B., 2014. Probabilistic Gaussian copula regression model for multisite and multivariable downscaling. Journal of Climate, 27 (9), 3331–3347. doi:10.1175/JCLI-D-13-00333.1
  • Bhowmik, S.K.R. and Durai, V.R., 2008. Multi-model ensemble forecasting of rainfall over Indian monsoon region. Atmosfera, 21 (3), 225–239.
  • Bhowmik, S.K.R. and Durai, V.R., 2012. Development of multimodel ensemble based district level medium range rainfall forecast system for Indian region. Journal of Earth System Science, 121 (2), 273–285. doi:10.1007/s12040-012-0158-x
  • Bisht, D.S., et al., 2019. Drought characterization over India under projected climate scenario. International Journal of Climatology, 39 (4), 1889–1911. doi:10.1002/joc.5922
  • Bisht, D.S., et al., 2020. Impact of climate change on streamflow regime of a large Indian river basin using a novel monthly hybrid bias correction technique and a conceptual modeling framework. Journal of Hydrology, 590, 125448. doi:10.1016/j.jhydrol.2020.125448
  • Cannon, A.J., 2018. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50 (1–2), 31–49. doi:10.1007/s00382-017-3580-6
  • Carlson, E., 1991. Self_organizing feature maps for appraisal of land value of shore parcels. In: T. Kohonen, et al. (Eds.), Artificial Neural Networks Proceedings of ICANN’91, Int. Conf. Artif. Neural Net, Vol. II., 1309–1312. North-Holland, Amsterdam.
  • Chen, J., et al., 2013. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49 (7), 4187–4205. doi:10.1002/wrcr.20331
  • Chen, J., et al., 2016. Using natural variability as a baseline to evaluate the performance of bias correction methods in hydrological climate change impact studies. Journal of Hydrometeorology, 17 (8), 2155–2174. doi:10.1175/JHM-D-15-0099.1
  • CWC (Central Water Commission). 2014. Mahanadi Basin. New Delhi: CWC and NRSC, 110.
  • Das, S.K. and Maity, R., 2015. A hydrometeorological approach for probabilistic simulation of monthly soil moisture under bare and crop land conditions. Water Resources Research, 51 (4), 2336–2355. doi:10.1002/2014WR016043
  • Dash, S.S., Sahoo, B., and Raghuwanshi, N.S., 2019. A SWAT-Copula based approach for monitoring and assessment of drought propagation in an irrigation command. Ecological Engineering, 127, 417–430. doi:10.1016/j.ecoleng.2018.11.021
  • Demaria, E. and Serrat-Capdevila, A., 2016. In L.E. García, et al., edited by. Validation of remote sensing-estimated hydrometeorological variables. Earth observation for water resources management: current use and future opportunities for the water sector. Washington, DC: The World Bank, 167–194.
  • Durai, V.R. and Bhardwaj, R., 2014. Forecasting quantitative rainfall over India using multi-model ensemble technique. Meteorology and Atmospheric Physics, 126 (1–2), 31–48. doi:10.1007/s00703-014-0334-4
  • Enayati, M., et al., 2021. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12 (2), 401–419. doi:10.2166/wcc.2020.261
  • Fang, G., et al., 2015. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19 (6), 2547–2559. doi:10.5194/hess-19-2547-2015
  • Fritsch, J.M., et al., 1998. Quantitative precipitation forecasting: report of the eighth prospectus development team, US weather research program. Bulletin of the American Meteorological Society, 79 (2), 285–299.
  • Gain, A.K., et al., 2011. Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling. Hydrology and Earth System Sciences, 15 (5), 1537–1545. doi:10.5194/hess-15-1537-2011
  • Ganguli, P. and Reddy, M.J., 2014. Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of western India. International Journal of Climatology, 34 (3), 911–928. doi:10.1002/joc.3742
  • Gebremicael, T.G., et al., 2022. Satellite-based rainfall estimates evaluation using a parsimonious hydrological model in the complex climate and topography of the Nile River Catchments. Atmospheric Research, 266, 105939. doi:10.1016/j.atmosres.2021.105939
  • Gebremicael, T.G., Mohamed, Y.A., and Van der Zaag, P., 2019. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment, 660, 1155–1167. doi:10.1016/j.scitotenv.2019.01.085
  • Gouda, L., 2019. Additional spillway of Hirakud dam-an analysis. International Dam Safety Conference, 2019: CDSO_IDSC2019_COMP, Compendium of Technical Papers, Bhubaneswar, 180–186.
  • Gu, X., et al., 2021. Identifying multivariate controls of soil moisture variations using multiple wavelet coherence in the US Midwest. Journal of Hydrology, 602, 126755. doi:10.1016/j.jhydrol.2021.126755
  • Gudmundsson, L., et al., 2012. Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrology and Earth System Sciences, 16 (9), 3383–3390. doi:10.5194/hess-16-3383-2012
  • Hamill, T.M., et al., 2013. NOAA’s second-generation global medium-range ensemble reforecast dataset. Bulletin of the American Meteorological Society, 94 (10), 1553–1565. doi:10.1175/BAMS-D-12-00014.1
  • Hao, Z., et al., 2017. An overview of drought monitoring and prediction systems at regional and global scales. Bulletin of the American Meteorological Society, 98 (9), 1879–1896. doi:10.1175/BAMS-D-15-00149.1
  • Hobaek Haff, I., Frigessi, A., and Maraun, D., 2015. How well do regional climate models simulate the spatial dependence of precipitation? An application of pair‐copula constructions. Journal of Geophysical Research: Atmospheres, 120 (7), 2624–2646. doi:10.1002/2014JD022748
  • Hosseini-Moghari, S.M. and Tang, Q., 2020. Validation of GPM IMERG V05 and V06 precipitation products over Iran. Journal of Hydrometeorology, 21 (5), 1011–1037. doi:10.1175/JHM-D-19-0269.1
  • Karunanithi, N., et al., 1994. Neural networks for river flow prediction. Journal of Computing in Civil Engineering, 8 (2), 201–220. doi:10.1061/(ASCE)0887-3801(1994)8:2(201)
  • Khatun, A., et al., 2022. Understanding the impacts of predecessor rain events on flood hazard in a changing climate. Hydrological Processes, 36 (2), e14500. doi:10.1002/hyp.14500
  • Kim, K.B., Bray, M., and Han, D., 2016. Exploration of optimal time steps for daily precipitation bias correction: a case study using a single grid of RCM on the River Exe in southwest England. Hydrological Sciences Journal, 61 (2), 289–301. doi:10.1080/02626667.2015.1027207
  • Kohonen, T., et al., 1996. Engineering applications of the self-organizing map. Proceedings of the IEEE, 84 (10), 1358–1384. doi:10.1109/5.537105
  • Krishnamurti, T.N., et al., 2000. Multimodel ensemble forecasts for weather and seasonal climate. Journal of Climate, 13 (23), 4196–4216. doi:10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2
  • Kumar, R. and Chatterjee, C., 2005. Regional flood frequency analysis using L-moments for North Brahmaputra region of India. Journal of Hydrologic Engineering, 10 (1), 1–7. doi:10.1061/(ASCE)1084-0699(2005)10:1(1)
  • Laux, P., et al., 2011. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. International Journal of Climatology, 29 (7), 937–954. doi:10.1002/joc.1852
  • Leander, R., et al., 2008. Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. Journal of Hydrology, 351 (3–4), 331–343. doi:10.1016/j.jhydrol.2007.12.020
  • Li, H., Sheffield, J., and Wood, E.F., 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental panel on climate change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres, 115 (D10), 1–20.
  • Liechti, T.C., et al., 2012. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrology and Earth System Sciences, 16 (2), 489–500. doi:10.5194/hess-16-489-2012
  • Liu, L., et al., 2017. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China. Journal of Hydrology, 554, 233–250. doi:10.1016/j.jhydrol.2017.08.032
  • Lorenz, M., et al., 2018. Copula‐based downscaling of daily precipitation fields. Hydrological Processes, 32 (23), 3479–3494. doi:10.1002/hyp.13271
  • Luo, M., et al., 2018. Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu River Basin in Western China. Water, 10 (8), 1046. doi:10.3390/w10081046
  • Ma, Q., et al., 2021. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmospheric Research, 249, 105304. doi:10.1016/j.atmosres.2020.105304
  • Madsen, H., 2000. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235 (3–4), 276–288. doi:10.1016/S0022-1694(00)00279-1
  • Maity, R., et al., 2019. Bias correction of zero-inflated RCM precipitation fields: a copula-based scheme for both mean and extreme conditions. Journal of Hydrometeorology, 20 (4), 595–611. doi:10.1175/JHM-D-18-0126.1
  • Maity, R. and Nagesh Kumar, D., 2008. Probabilistic prediction of hydroclimatic variables with nonparametric quantification of uncertainty. Journal of Geophysical Research: Atmospheres, 113 (D14). doi:10.1029/2008JD009856
  • Mao, G., et al., 2015. Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data. Hydrology and Earth System Sciences, 19 (4), 1787–1806. doi:10.5194/hess-19-1787-2015
  • Meaurio, M., et al., 2017. Assessing the hydrological response from an ensemble of CMIP5 climate projections in the transition zone of the Atlantic region (Bay of Biscay). Journal of Hydrology, 548, 46–62. doi:10.1016/j.jhydrol.2017.02.029
  • Michelangeli, P.A., Vrac, M., and Loukos, H., 2009. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophysical Research Letters, 36 (11). doi:10.1029/2009GL038401
  • Mishra, A., et al., 2013. Short-term rainfall forecasts as a soft adaptation to climate change in irrigation management in North-East India. Agricultural Water Management, 127, 97–106. doi:10.1016/j.agwat.2013.06.001
  • Moftakhari, H., et al., 2019. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 128, 28–38. doi:10.1016/j.advwatres.2019.04.009
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mukherjee, S., et al., 2018. Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45–53. doi:10.1016/j.wace.2018.03.005
  • Nanda, T., et al., 2016. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products. Journal of Hydrology, 539, 57–73. doi:10.1016/j.jhydrol.2016.05.014
  • Nanda, T., Sahoo, B., and Chatterjee, C., 2017. Enhancing the applicability of Kohonen Self-Organizing Map (KSOM) estimator for gap-filling in hydrometeorological time series data. Journal of Hydrology, 549, 133–147. doi:10.1016/j.jhydrol.2017.03.072
  • Nelsen, R.B., 2006. An introduction to copulas. 2nd edn. Berlin: Springer Science & Business Media, 218.
  • Pai, D.S., et al., 2014. Development of a new high spatial resolution (0.25°×0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65 (1), 1–18. doi:10.54302/mausam.v65i1.851
  • Pal, M., et al., 2017. Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data. IEEE Transactions on Geoscience and Remote Sensing, 55 (3), 1351–1362. doi:10.1109/TGRS.2016.2623378
  • Perumal, M., et al., 2011. Real-time flood-stage forecasting by variable parameter Muskingum stage hydrograph routing method. Hydrology Research (Formerly Nordic Hydrology), 42 (2–3), 150–161.
  • Piani, C., et al., 2010. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395 (3–4), 199–215. doi:10.1016/j.jhydrol.2010.10.024
  • Pierce, D.W., et al., 2015. Improved bias correction techniques for hydrological simulations of climate change. Journal of Hydrometeorology, 16 (6), 2421–2442. doi:10.1175/JHM-D-14-0236.1
  • Puranik, S.S., Kulkarni, M.A., and Singh, J., 2019. Analysis of NMME system in simulating Indian summer monsoon rainfall. Theoretical and Applied Climatology, 138 (3–4), 1241–1253. doi:10.1007/s00704-019-02889-7
  • Pyrce, R., 2004. Hydrological low flow indices and their uses. Watershed Science Centre, (WSC) Report, (04-2004).
  • Reddy, J.M. and Ganguli, P., 2012. Risk assessment of hydroclimatic variability on groundwater levels in the Manjara basin aquifer in India using Archimedean copulas. Journal of Hydrologic Engineering, 17 (12), 1345–1357. doi:10.1061/(ASCE)HE.1943-5584.0000564
  • Rustum, R. and Adeloye, A.J., 2007. Replacing outliers and missing values from activated sludge data using Kohonen self-organizing map. Journal of Environmental Engineering, 133 (9), 909–916. doi:10.1061/(ASCE)0733-9372(2007)133:9(909)
  • Rustum, R. and Adeloye, A., 2012. Improved modelling of wastewater treatment primary clarifier using hybrid ANNS. International Journal of Computer Science and Artificial Intelligence, 2 (4), 14. doi:10.5963/IJCSAI0204002
  • Rustum, R., Adeloye, A.J., and Scholz, M., 2008. Applying kohonen self‐organizing map as a software sensor to predict biochemical oxygen demand. Water Environment Research, 80 (1), 32–40. doi:10.2175/106143007X184500
  • Sahai, A.K., et al., 2017. A bias-correction and downscaling technique for operational extended range forecasts based on self organizing map. Climate Dynamics, 48 (7–8), 2437–2451. doi:10.1007/s00382-016-3214-4
  • Sahoo, S. and Sahoo, B., 2020. Is hillslope-based catchment decomposition approach superior to hydrologic response unit (HRU) for stream-aquifer interaction modelling: inference from two process-based coupled models. Journal of Hydrology, 591, 125588. doi:10.1016/j.jhydrol.2020.125588
  • Sahoo, D.P., Sahoo, B., and Tiwari, M.K., 2020. Copula-based probabilistic spectral algorithms for high-frequent streamflow estimation. Remote Sensing of Environment, 251, 112092. doi:10.1016/j.rse.2020.112092
  • Salvi, K., Kannan, S., and Ghosh, S., 2013. High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. Journal of Geophysical Research: Atmospheres, 118 (9), 3557–3578. doi:10.1002/jgrd.50280
  • Samaniego, L., Bárdossy, A., and Kumar, R., 2010. Streamflow prediction in ungauged catchments using copula‐based dissimilarity measures. Water Resources Research, 46 (2). doi:10.1029/2008WR007695
  • Saminathan, S., et al., 2021. Improving short to medium range GEFS precipitation forecast in India. Journal of Hydrology, 598, 126431. doi:10.1016/j.jhydrol.2021.126431
  • Singh, J., Knapp, H.V., and Demissie, M., 2004. Hydrologic model- ing of the Iroquois River watershed using HSPF and SWAT. In: ISWS CR 2004-08. Champaign, Ill: Illinois State Water Survey. Available from: https:/www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf.
  • Smitha, P.S., et al., 2018. An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. Journal of Hydrology, 556, 100–118. doi:10.1016/j.jhydrol.2017.11.010
  • Sraj, M., Bezak, N., and Brilly, M., 2015. Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrological Processes, 29 (2), 225–238. doi:10.1002/hyp.10145
  • Su, X., et al., 2014. Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008-2012. Journal of Geophysical Research: Atmospheres, 119 (12), 7292–7310. doi:10.1002/2014JD021733
  • Sunyer, M.A., et al., 2014. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19 (4), 1827–1847. doi:10.5194/hess-19-1827-2015
  • Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmosphere, 106 (D7), 7183–7192. doi:10.1029/2000JD900719
  • Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology, 456-457, 12–29. doi:10.1016/j.jhydrol.2012.05.052
  • Thiemig, V., et al., 2012. Validation of satellite-based precipitation products over sparsely gauged African river basins. Journal of Hydrometeorology, 13 (6), 1760–1783. doi:10.1175/JHM-D-12-032.1
  • Thrasher, B., et al., 2012. Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16 (9), 3309–3314. doi:10.5194/hess-16-3309-2012
  • Tiwari, A.D., Mukhopadhyay, P., and Mishra, V., 2021. Influence of bias correction of meteorological and streamflow forecast on hydrological prediction in India. Journal of Hydrometeorology. doi:10.1175/JHM-D-20-0235.1
  • Vandana, K., et al., 2019. Assessment of potential impact of climate change on streamflow: a case study of the Brahmani River basin, India. Journal of Water and Climate Change, 10 (3), 624–641. doi:10.2166/wcc.2018.129
  • Vatanen, T., et al., 2013. Controlling self- organization and handling missing values in SOM and GTM. In: P. Estévez, J. Príncipe, and P. Zegers, eds. Advances in self-organizing maps. Advances in intelligent systems and computing. Vol. 198, 55–64. Berlin, Heidelberg: Springer.
  • Vesanto, J., et al., 2000. SOM toolbox for MATLAB 5. Technical Report, 57, 2.
  • Yang, C., Yuan, H., and Su, X., 2020. Bias correction of ensemble precipitation forecasts in the improvement of summer streamflow prediction skill. Journal of Hydrology, 588, 124955. doi:10.1016/j.jhydrol.2020.124955
  • Yoshimoto, S. and Amarnath, G., 2017. Applications of satellite-based rainfall estimates in flood inundation modeling—a case study in Mundeni Aru River Basin, Sri Lanka. Remote Sensing, 9 (10), 998. doi:10.3390/rs9100998
  • Zare, M., et al., 2021. Optimizing the Runoff estimation with HEC-HMS model using spatial evapotranspiration by the SEBS model. Water Resources Management, 35 (8), 2633–2648. doi:10.1007/s11269-021-02855-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.