196
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the performance of hydrological models with joint multifractal spectra

ORCID Icon, ORCID Icon, , &
Pages 1771-1789 | Received 31 Aug 2021, Accepted 18 Jul 2022, Published online: 20 Sep 2022

References

  • Abebe, N.A., Ogden, F.L., and Pradhan, N.R., 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: implications for parameter estimation. Journal of Hydrology, 389 (3–4), 301–310. Elsevier B.V. doi:10.1016/j.jhydrol.2010.06.007.
  • Ariza-Villaverde, A.B., et al., 2019. Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river valley. Agricultural and Forest Meteorology, 278, 107657. doi: 10.1016/j.agrformet.2019.107657.
  • Aubert, D., Loumagne, C., and Oudin, L., 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model. Journal of Hydrology, 280 (1–4), 145–161. Elsevier. doi:10.1016/S0022-1694(03)00229-4.
  • Bai, Z., et al., 2019. Joint multifractal spectrum analysis for characterizing the nonlinear relationship among hydrological variables. Journal of Hydrology, 576. doi:10.1016/j.jhydrol.2019.06.030.
  • Bai, Z., 2020. Fractal-based analysis and simulation of hydrological processes. Hangzhou, China: Zhejiang University.
  • Bai, Z., et al., 2021. A new fractal-theory-based criterion for hydrological model calibration. Hydrology and Earth System Sciences, 25 (6), 3675–3690. Copernicus GmbH. doi:10.5194/hess-25-3675-2021.
  • Beldring, S., 2002. Multi-criteria validation of a precipitation–runoff model. Journal of Hydrology, 257 (1–4), 189–211. Elsevier. doi:10.1016/S0022-1694(01)00541-8.
  • Bergstrom, S. (1992) The HBV model-its structure and applications.
  • Bergström, S. and Lindström, G., 2015. Interpretation of runoff processes in hydrological modelling-experience from the HBV approach. Hydrological Processes, 29 (16), 3535–3545. doi:10.1002/hyp.10510.
  • Biswas, A., 2019. Joint multifractal analysis for three variables: characterizing the effect of topography and soil texture on soil water storage. Geoderma, 334 (October 2017), 15–23. Elsevier. doi:10.1016/j.geoderma.2018.07.035
  • Chang, T.P., et al., 2012. Fractal dimension of wind speed time series. Applied Energy, 93, 742–749. Elsevier Ltd. doi:10.1016/j.apenergy.2011.08.014
  • Cheng, Q., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25 (9), 949–961. Elsevier. doi:10.1016/S0098-3004(99)00060-6.
  • Cheng, Q., 2016. Multifractality and spatial statistics multifractality and spatial statistics. Elsevier, 3004 (April), 949–961. doi:10.1016/S0098-3004(99)00060-6.
  • Cheng, Q. and Agterberg, F.P., 1996. Multifractal modeling and spatial statistics. Mathematical Geology, 28 (1), 1–16. doi:10.1007/BF02273520.
  • Cuo, L., et al., 2015. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 120 (16), 8276–8298. Wiley Online Library. doi:10.1002/2015JD023193.
  • Dimitriadis, P., et al., 2021. A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology, 8 (2), 59. Multidisciplinary Digital Publishing Institute. doi: 10.3390/hydrology8020059.
  • Efstratiadis, A. and Koutsoyiannis, D., 2010. One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55 (1), 58–78. Taylor & Francis. doi:10.1080/02626660903526292.
  • Evertsz, C.J.G. and Mandelbrot, B.B., 1992. Self-similarity of harmonic measure on DLA. Physica A: Statistical Mechanics and Its Applications, 185 (1–4), 77–86. Elsevier. doi:10.1016/0378-4371(92)90440-2.
  • García-Marín, A.P., et al., 2015. The use of the exponent K(q) function to delimit homogeneous regions in regional frequency analysis of extreme annual daily rainfall. Hydrological Processes, 29 (1), 139–151. doi:10.1002/hyp.10284.
  • Gires, A., et al., 2017. Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences, 21 (5), 2361–2375. doi: 10.5194/hess-21-2361-2017.
  • Hubert, P., et al., 1993. Multifractals and extreme rainfall events. Geophysical Research Letters, 20 (10), 931–934. Wiley Online Library. doi:10.1029/93GL01245.
  • Hubert, P., 2001. Multifractals as a tool to overcome scale problems in hydrology. Hydrological Sciences Journal, 46 (6), 897–905. Taylor & Francis. doi:10.1080/02626660109492884.
  • Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116 (1), 770–799. doi:10.1061/TACEAT.0006518.
  • Kantelhardt, J.W., et al., 2003. Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A: Statistical Mechanics and Its Applications, 330 (1–2), 240–245. doi:10.1016/j.physa.2003.08.019.
  • Katsev, S. and L’Heureux, I., 2003. Are Hurst exponents estimated from short or irregular time series meaningful? Computers & Geosciences, 29 (9), 1085–1089. doi:10.1016/S0098-3004(03)00105-5.
  • Korres, W., et al., 2015. Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data. Journal of Hydrology, 520, 326–341. Elsevier B.V. doi:10.1016/j.jhydrol.2014.11.042.
  • Koutsoyiannis, D., 2011. Hurst-Kolmogorov dynamics and uncertainty. JAWRA Journal of the American Water Resources Association, 47 (3), 481–495. doi:10.1111/j.1752-1688.2011.00543.x.
  • Koutsoyiannis, D., 2020. Revisiting the global hydrological cycle: is it intensifying? Hydrology and Earth System Sciences, 24 (8), 3899–3932. Copernicus GmbH. doi: 10.5194/hess-24-3899-2020.
  • Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005.
  • Kravchenko, A.N., Bullock, D.G., and Boast, C.W., 2000. Joint multifractal analysis of crop yield and terrain slope. Agronomy Journal, 92 (6), 1279–1290. Wiley Online Library. doi:10.2134/agronj2000.9261279x.
  • Labat, D., Mangin, A., and Ababou, R., 2002. Rainfall–runoff relations for karstic springs: multifractal analyses. Journal of Hydrology, 256 (3–4), 176–195. Elsevier. doi:10.1016/S0022-1694(01)00535-2.
  • Liang, X., et al., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99 (D7), 14415–14428. Wiley Online Library. doi:10.1029/94JD00483.
  • Lindström, G., et al., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201 (1–4), 272–288. Elsevier. doi:10.1016/S0022-1694(97)00041-3.
  • Liu, L., et al., 2017. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China. Journal of Hydrology, 554, 233–250. Elsevier. doi:10.1016/j.jhydrol.2017.08.032.
  • Li, H., Xu, C.Y., and Beldring, S., 2015. How much can we gain with increasing model complexity with the same model concepts? Journal of Hydrology, 527, 858–871. doi:10.1016/j.jhydrol.2015.05.044.
  • Markonis, Y. and Koutsoyiannis, D., 2016. Scale-dependence of persistence in precipitation records. Nature Climate Change, 6 (4), 399–401. Nature Publishing Group. doi:10.1038/nclimate2894.
  • Meneveau, C., et al., 1990. Joint multifractal measures: theory and applications to turbulence. Physical Review A, 41 (2), 894–913. doi:10.1103/PhysRevA.41.894.
  • Onyutha, C., et al., 2019. How well do climate models reproduce variability in observed rainfall? A case study of the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations. Stochastic Environmental Research and Risk Assessment, 33 (3), 687–707. Springer Berlin Heidelberg. doi:10.1007/s00477-018-1611-4.
  • Onyutha, C., 2021. Graphical-statistical method to explore variability of hydrological time series. Hydrology Research, 52 (1), 266–283. IWA Publishing. doi:10.2166/nh.2020.111.
  • Pan, S., et al., 2017. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China. Hydrological Sciences Journal, 62 (15), 2511–2530. Taylor & Francis. doi:10.1080/02626667.2017.1388917.
  • Pan, S., et al., 2018. Integration of remote sensing evapotranspiration into multi-objective calibration of distributed hydrology-soil-vegetation model (DHSVM) in a humid region of China. Water, 10 (12), 1841. doi:10.3390/w10121841.
  • Pan, S., et al., 2019. Appropriateness of potential evapotranspiration models for climate change impact analysis in Yarlung Zangbo river basin, China. Atmosphere (Basel), 10 (8). doi:10.3390/atmos10080453.
  • Pelletier, J.D. and Turcotte, D.L., 1999. Self-affine time series: II. Applications and models. In: Advances in Geophysics. Elsevier, Vol. 40, 91–166.
  • Perdios, A. and Langousis, A., 2020. Revisiting the statistical scaling of annual discharge maxima at daily resolution with respect to the basin size in the light of rainfall climatology. Water, 12 (2), 610. Multidisciplinary Digital Publishing Institute. doi: 10.3390/w12020610.
  • Perrin, C., Michel, C., and Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279 (1–4), 275–289. Elsevier. doi:10.1016/S0022-1694(03)00225-7.
  • Pokhrel, P., Yilmaz, K.K., and Gupta, H.V., 2012. Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures. Journal of Hydrology, 418–419, 49–60. doi:10.1016/j.jhydrol.2008.12.004.
  • Pushpalatha, R., et al., 2012. A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420–421, 171–182. Elsevier B.V. doi:10.1016/j.jhydrol.2011.11.055.
  • Rubalcaba, J.J.O., 1997a. Fractal analysis of climatic data: annual precipitation records in Spain. Theoretical and Applied Climatology, 56 (1–2), 83–87. Springer. doi:10.1007/BF00863785.
  • Rubalcaba, J.J.O., 1997b. Fractal analysis of climatic data : annual precipitation records in Spain. Theoretical and applied climatology, 87, 83–87.
  • Salat, H., Murcio, R., and Arcaute, E., 2017. Multifractal methodology. Physica A: Statistical Mechanics and Its Applications, 473, 467–487. Elsevier B.V. doi:10.1016/j.physa.2017.01.041.
  • Sankaran, A., et al., 2021. Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India. Natural Hazards, 106 (3), 1951–1979. Springer. doi:10.1007/s11069-021-04523-0.
  • Seibert, J., 2005. HBV light version 2, user’s manual. Stockholm University. http://people.su.se/~jseib/HBV/HBV_manual_2005.pdf.
  • Tessier, Y., et al., 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research: Atmospheres, 101 (D21), 26427–26440. Wiley Online Library. doi:10.1029/96JD01799.
  • Tian, Y., et al., 2015. Uncertainty in future high flows in qiantang river basin, China. Journal of Hydrometeorology, 16 (1), 363–380. doi:10.1175/JHM-D-13-0136.1.
  • Tian, Y., Xu, Y.-P., and Zhang, X.-J., 2013. Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and Xinanjiang models. Water Resources Management, 27 (8), 2871–2888. Springer.
  • Varado, N., et al., 2006. Multi-criteria assessment of the representative elementary watershed approach on the Donga catchment (Benin) using a downward approach of model complexity. Hydrology and Earth System Sciences Discuss, 10 (3), 427–442.
  • Wang, Z., 2020. Impact of climate change on hydrological and meteorological elements in Oujiang Basin. Hangzhou, China: Zhejiang University.
  • Wigmosta, M.S., et al., 2002. The distributed hydrology soil vegetation model. Mathematica Modeling Small Watershed Hydrological Applied, 7–42. Littleton, CO: Water Resource Publications.
  • Wigmosta, M.S., Vail, L.W., and Lettenmaier, D.P., 1994. A distributed hydrology‐vegetation model for complex terrain. Water Resources Research, 30 (6), 1665–1679. Wiley Online Library. doi:10.1029/94WR00436.
  • Zeleke, T.B. and Bing, C.S., 2004. Scaling properties of topographic indices and crop yield: multifractal and joint multifractal approaches. Agronomy Journal, 96 (4), 1082–1090. doi: 10.2134/agronj2004.1082.
  • Zhang, Q., et al., 2009. Multifractal analysis of streamflow records of the East River basin (Pearl River), China. Physica A: Statistical Mechanics and Its Applications, 388(6), 927–934. Elsevier B.V. doi:10.1016/j.physa.2008.11.025.
  • Zhang, Q., et al., 2010. Multifractal analysis of measure representation of flood/drought grade series in the Yangtze Delta, China, during the past millennium and their fractal model simulation. International Journal of Climatology, 30 (3), 450–457. doi:10.1002/joc.1924.
  • Zhang, T., et al., 2018. Long-range correlation analysis of soil temperature and moisture on A’rou Hillsides, Babao River Basin. Journal of Geophysical Research: Atmospheres, 123 (22), 12,606–12,620. doi:10.1029/2018JD029094.
  • Zhang, X., et al., 2019. A modified multifractal detrended fluctuation analysis (MFDFA) approach for multifractal analysis of precipitation in dongting lake basin, China. Water, 11 (5), 891. Multidisciplinary Digital Publishing Institute. doi:10.3390/w11050891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.