207
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Impact of climate and NDVI changes on catchment storage–discharge dynamics in southern Taiwan

ORCID Icon & ORCID Icon
Pages 1834-1845 | Received 23 Dec 2021, Accepted 14 Jul 2022, Published online: 20 Sep 2022

References

  • Ahiablame, L., et al., 2017. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin. Journal of Hydrology, 551, 188–202. doi:10.1016/j.jhydrol.2017.05.055
  • Ajami, H., et al., 2011. Quantifying mountain block recharge by means of catchment‐scale storage‐discharge relationships. Water Resources Research, 47 (4), W04504. doi:10.1029/2010WR009598
  • Amanambu, A.C., et al., 2020. Groundwater system and climate change: present status and future considerations. Journal of Hydrology, 589, 125163. doi:10.1016/j.jhydrol.2020.125163
  • Arthington, A.H., et al., 2018. The Brisbane declaration and global action agenda on environmental flows (2018). Frontiers in Environmental Science, 6, 45. doi:10.3389/fenvs.2018.00045
  • Arumí, J.L., et al., 2016. Where does the water go? understanding geohydrological behaviour of Andean catchments in south-central Chile. Hydrological Sciences Journal, 61 (5), 844–855.
  • Bart, R. and Hope, A., 2014. Inter-seasonal variability in baseflow recession rates: the role of aquifer antecedent storage in central California watersheds. Journal of Hydrology, 519, 205–213. doi:10.1016/j.jhydrol.2014.07.020
  • Berghuijs, W.R., Hartmann, A., and Woods, R.A., 2016. Streamflow sensitivity to water storage changes across Europe. Geophysical Research Letters, 43 (5), 1980–1987. doi:10.1002/2016GL067927
  • Birkel, C., Soulsby, C., and Tetzlaff, D., 2011. Modelling catchment‐scale water storage dynamics: reconciling dynamic storage with tracer‐inferred passive storage. Hydrological Processes, 25 (25), 3924–3936. doi:10.1002/hyp.8201
  • Biswal, B., 2021. Decorrelation is not dissociation: there is no means to entirely decouple the Brutsaert-Nieber parameters in streamflow recession analysis. Advances in Water Resources, 147, 103822. doi:10.1016/j.advwatres.2020.103822
  • Biswal, B. and Kumar, D.N., 2014. What mainly controls recession flows in river basins? Advances in Water Resources, 65, 25–33. doi:10.1016/j.advwatres.2014.01.001
  • Biswal, B. and Kumar, D.N., 2015. Estimation of ‘drainable’storage–a geomorphological approach. Advances in Water Resources, 77, 37–43. doi:10.1016/j.advwatres.2014.12.009
  • Biswal, B. and Marani, M., 2010. Geomorphological origin of recession curves. Geophysical Research Letters, 37 (24), L24403. doi:10.1029/2010GL045415
  • Biswal, B. and Marani, M., 2014. ‘Universal’ recession curves and their geomorphological interpretation. Advances in Water Resources, 65, 34–42. doi:10.1016/j.advwatres.2014.01.004
  • Bogaart, P.W., et al., 2016. Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrology and Earth System Sciences, 20 (4), 1413–1432. doi:10.5194/hess-20-1413-2016
  • Brutsaert, W., 2008. Long‐term groundwater storage trends estimated from streamflow records: climatic perspective. Water Resources Research, 44 (2), W02409. doi:10.1029/2007WR006518
  • Brutsaert, W. and Nieber, J.L., 1977. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13 (3), 637–643. doi:10.1029/WR013i003p00637
  • Buttle, J.M., 2016. Dynamic storage: a potential metric of inter‐basin differences in storage properties. Hydrological Processes, 30 (24), 4644–4653. doi:10.1002/hyp.10931
  • Buttle, J.M., 2018. Mediating stream baseflow response to climate change: the role of basin storage. Hydrological Processes, 32 (3), 363–378. doi:10.1002/hyp.11418
  • Central Geological Survey, 2012. Hydrogeology investigation and groundwater resource assessment for Taiwan-groundwater recharge estimation and model simulation Pingtung Plain. Taipei, ROC: Central Geological Survey. (in Chinese).
  • Chen, X., Kumar, M., Basso, S., and Marani, M., 2018. On the effectiveness of recession analysis methods for capturing the characteristic storage-discharge relation: An intercomparison study, Hydrology and Earth System Sciences Discussions. [preprint], https://doi.org/10.5194/hess-2018-65
  • Chen, Y.Y., da Rocha, G.O., and de Andrade, J.B., 2019. Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9 (1), 1–12. doi:10.1038/s41598-018-37186-2
  • Cheng, L., et al., 2017. Quantifying the impacts of vegetation changes on catchment storage‐discharge dynamics using paired‐catchment data. Water Resources Research, 53 (7), 5963–5979. doi:10.1002/2017WR020600
  • Cheng, L., Zhang, L., and Brutsaert, W., 2016. Automated selection of pure base flows from regular daily streamflow data: objective algorithm. Journal of Hydrologic Engineering, 21 (11), 06016008. doi:10.1061/(ASCE)HE.1943-5584.0001427
  • Creutzfeldt, B., et al., 2014. Storage‐discharge relationships at different catchment scales based on local high‐precision gravimetry. Hydrological Processes, 28 (3), 1465–1475. doi:10.1002/hyp.9689
  • Cuthbert, M.O., et al., 2019. Global patterns and dynamics of climate–groundwater interactions. Nature Climate Change, 9 (2), 137–141. doi:10.1038/s41558-018-0386-4
  • Dewandel, B., et al., 2003. Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. Journal of Hydrology, 274 (1–4), 248–269. doi:10.1016/S0022-1694(02)00418-3
  • Dey, P. and Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. Journal of Hydrology, 548, 278–290. doi:10.1016/j.jhydrol.2017.03.014
  • Donat, M.G., et al., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6 (5), 508–513. doi:10.1038/nclimate2941
  • Dralle, D.N., et al., 2017. Event-scale power law recession analysis: quantifying methodological uncertainty. Hydrology and Earth System Sciences, 21 (1), 65–81. doi:10.5194/hess-21-65-2017
  • Dralle, D., Karst, N., and Thompson, S.E., 2015. a, b careful: the challenge of scale invariance for comparative analyses in power law models of the streamflow recession. Geophysical Research Letters, 42 (21), 9285–9293. doi:10.1002/2015GL066007
  • Ghosh, D.K., Wang, D., and Zhu, T., 2016. On the transition of base flow recession from early stage to late stage. Advances in Water Resources, 88, 8–13. doi:10.1016/j.advwatres.2015.11.015
  • Gleeson, T., et al., 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48 (1), 431–463. doi:10.1146/annurev-earth-071719-055251
  • Hinzman, A.M., et al., 2020. Increasing non‐linearity of the storage‐discharge relationship in sub‐Arctic catchments. Hydrological Processes, 34 (19), 3894–3909. doi:10.1002/hyp.13860
  • Hovius, N., et al., 2011. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 304 (3–4), 347–355. doi:10.1016/j.epsl.2011.02.005
  • Huang, W.C., et al., 2012. The impact of climate change on rainfall frequency in Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 23 (5), 553. doi:10.3319/TAO.2012.05.03.04(WMH)
  • Huang, C.C. and Yeh, H.F., 2019. Hydrogeological parameter determination in the southern catchments of Taiwan by flow recession method. Water, 11 (1), 7. doi:10.3390/w11010007
  • Huete, A., et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83 (1–2), 195–213. doi:10.1016/S0034-4257(02)00096-2
  • IPCC, 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.
  • Jasechko, S., 2019. Global isotope hydrogeology―review. Reviews of Geophysics, 57 (3), 835–965.
  • Kazemi, H., Hashemi, H., Maghsood, F., Hosseini, S. H., Sarukkalige, R., Jamali, S., and Berndtsson, R., 2020. Assessment of streamflow decrease due to climate vs. human influence in a semiarid area, Hydrology and Earth System Sciences Discussions. [preprint], https://doi.org/10.5194/hess-2019-618
  • Kingsford, R.T. and Thomas, R.F., 2002. Environmental flows on the Paroo and Warrego Rivers: progress report year 2. Sydney, NSW: National Parks & Wildlife Service.
  • Kirchner, J.W., 2009. Catchments as simple dynamical systems: catchment characterization, rainfall‐runoff modeling, and doing hydrology backward. Water Resources Research, 45 (2), 1–34. doi:10.1029/2008WR006912
  • Kirchner, J.W., 2016. Aggregation in environmental systems-part 2: catchment mean transit times and young water fractions under hydrologic nonstationarity. Hydrology and Earth System Sciences, 20 (1), 299–328. doi:10.5194/hess-20-299-2016
  • Li, C., et al., 2018. An analytical approach to separate climate and human contributions to basin streamflow variability. Journal of Hydrology, 559, 30–42. doi:10.1016/j.jhydrol.2018.02.019
  • Lin, L., et al., 2020. Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River. Hydrology and Earth System Sciences, 24 (3), 1145–1157. doi:10.5194/hess-24-1145-2020
  • Lin, K.T. and Yeh, H.F., 2017. Baseflow recession characterization and groundwater storage trends in northern Taiwan. Hydrology Research, 48 (6), 1745–1756. doi:10.2166/nh.2017.237
  • Liu, S.C., et al., 2008. Changes of precipitation intensity in East Asia. In: 2008 Taiwan climate change conference. Taipei, ROC. (in Chinese).
  • Li, Y. and Zhang, Q., 2018. Historical and predicted variations of baseflow in China’s Poyang Lake catchment. River Research and Applications, 34 (10), 1286–1297. doi:10.1002/rra.3379
  • Lu, M.M., et al., 2012. Climate variations in Taiwan during 1911–2009. Atmospheric Science, 40 (3), 297–321. (in Chinese).
  • Mendoza, G.F., et al., 2003. Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. Journal of Hydrology, 279 (1–4), 57–69. doi:10.1016/S0022-1694(03)00174-4
  • Meriö, L.J., et al., 2019. Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments. Water Resources Research, 55 (5), 4096–4109. doi:10.1029/2018WR023031
  • Montgomery, D.R., Huang, M.Y.F., and Huang, A.Y.L., 2014. Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan. Quaternary Research, 81 (1), 15–20. doi:10.1016/j.yqres.2013.10.005
  • Oyarzún, R., et al., 2014. Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. Journal of Arid Environments, 105, 1–11. doi:10.1016/j.jaridenv.2014.02.012
  • Parra, V., et al., 2019. Characterization of the groundwater storage systems of south-central Chile: an approach based on recession flow analysis. Water, 11 (11), 2324. doi:10.3390/w11112324
  • Patnaik, S., et al., 2018. Regional variation of recession flow power‐law exponent. Hydrological Processes, 32 (7), 866–872. doi:10.1002/hyp.11441
  • Patnaik, S. et al., 2015. Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient. Journal of Hydrology, 528, 321–328. doi:10.1016/j.jhydrol.2015.06.032
  • Ploum, S.W., et al., 2019. Soil frost effects on streamflow recessions in a subarctic catchment. Hydrological Processes, 33 (9), 1304–1316. doi:10.1002/hyp.13401
  • Qiu, L.W., et al., 2015. Summary of Taiwan forestry investigation report IV. Taipei, ROC: Forestry Bureau. (in Chinese).
  • Sánchez-Murillo, R., et al., 2015. Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeology Journal, 23 (2), 287–303. doi:10.1007/s10040-014-1191-4
  • Santos, R.M.B., et al., 2014. The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. Journal of Hydrology, 519, 1297–1314. doi:10.1016/j.jhydrol.2014.09.001
  • Santos, A.C., et al., 2019. Estimation of streamflow recession parameters: new insights from an analytic streamflow distribution model. Hydrological Processes, 33 (11), 1595–1609. doi:10.1002/hyp.13425
  • Shaw, S.B., 2016. Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catchment in New York state. Hydrological Processes, 30 (3), 479–492. doi:10.1002/hyp.10626
  • Song, S., et al., 2016. The long-term water level dynamics during urbanization in plain catchment in Yangtze River Delta. Agricultural Water Management, 174, 93–102. doi:10.1016/j.agwat.2016.01.010
  • Staudinger, M., et al., 2017. Catchment water storage variation with elevation. Hydrological Processes, 31 (11), 2000–2015. doi:10.1002/hyp.11158
  • Sterling, S.M., Ducharne, A., and Polcher, J., 2013. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 3 (4), 385–390. doi:10.1038/nclimate1690
  • Stoelzle, M., Stahl, K., and Weiler, M., 2013. Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences, 17 (2), 817–828. doi:10.5194/hess-17-817-2013
  • Sugita, M. and Brutsaert, W., 2009. Recent low-flow and groundwater storage changes in upland watersheds of the Kanto region, Japan. Journal of Hydrologic Engineering, 14 (3), 280–285. doi:10.1061/(ASCE)1084-0699(2009)14:3(280)
  • Szilagyi, J., Gribovszki, Z., and Kalicz, P., 2007. Estimation of catchment-scale evapotranspiration from baseflow recession data: numerical model and practical application results. Journal of Hydrology, 336 (1–2), 206–217. doi:10.1016/j.jhydrol.2007.01.004
  • Taylor, R.G., et al., 2013. Ground water and climate change. Nature Climate Change, 3 (4), 322–329. doi:10.1038/nclimate1744
  • Thomas, B.F., et al., 2013. Estimation of the base flow recession constant under human interference. Water Resources Research, 49 (11), 7366–7379. doi:10.1002/wrcr.20532
  • Tolley, D., Foglia, L., and Harter, T., 2019. Sensitivity analysis and calibration of an integrated hydrologic model in an irrigated agricultural basin with a groundwater‐dependent ecosystem. Water Resources Research, 55 (9), 7876–7901. doi:10.1029/2018WR024209
  • Tran, D.H. and Wang, S.J., 2020. Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences, 382, 361–365. doi:10.5194/piahs-382-361-2020
  • Troch, P.A., et al., 2013. The importance of hydraulic groundwater theory in catchment hydrology: the legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research, 49 (9), 5099–5116. doi:10.1002/wrcr.20407
  • Van Camp, M., et al., 2017. Geophysics from terrestrial time‐variable gravity measurements. Reviews of Geophysics, 55 (4), 938–992.
  • Vannier, O., Braud, I., and Anquetin, S., 2014. Regional estimation of catchment‐scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrological Processes, 28 (26), 6276–6291. doi:10.1002/hyp.10101
  • Wada, Y., et al., 2010. Global depletion of groundwater resources. Geophysical Research Letters, 37 (20), L20402. doi:10.1029/2010GL044571
  • Wang, C.H., 2007. The impacts of climate change on the groundwater environment of Taiwan: retrospective and prospective views. Central Geological Survey, 18, 239–255. (In Chinese).
  • Wang, D., 2011. On the base flow recession at the Panola mountain research watershed, Georgia, United States. Water Resources Research, 47 (3), W03527. doi:10.1029/2010WR009910
  • Wang, H.W., et al., 2018. Assessment of land subsidence and climate change impacts on inundation hazard in southwestern Taiwan. Irrigation and Drainage, 67, 26–37. doi:10.1002/ird.2206
  • Wang, D. and Cai, X., 2009. Detecting human interferences to low flows through base flow recession analysis. Water Resources Research, 45 (7), W07426. doi:10.1029/2009WR007819
  • Wang, D. and Cai, X., 2010a. Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds. Geophysical Research Letters, 37 (6), L06406. doi:10.1029/2009GL041879
  • Wang, D. and Cai, X., 2010b. Recession slope curve analysis under human interferences. Advances in Water Resources, 33 (9), 1053–1061. doi:10.1016/j.advwatres.2010.06.010
  • Wang, C.H., Kuo, C.H., and Chang, F.C., 2004. The changing face of the groundwater environment in Taiwan. Central Geological Survey, 17, 1–22. (In Chinese).
  • Water Resources Agency, 1986. Basic plan of the regulation scheme in Bazhang River. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2000. Planning of drainage system and environment rehabilitation of Yanshuei-chi drainage in Tainan area. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2004. Development of the watershed digital topography information system for integrated basin management. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2007. The regulation and management scheme in the upstream of Laonong River. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2014. 2014 annual report on Taiwan water use statistics. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2015. Hydrological year book. Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2016. The third stage management project of climate change impacts and adaptation on water environment (3/5). Taipei, ROC: Water Resources Agency. (in Chinese).
  • Water Resources Agency, 2017. Assessment of groundwater potential exploiting zones and groundwater yields in Kaoping and Chianan watersheds (2/2). Taipei, ROC: Water Resources Agency. (in Chinese).
  • Welde, K. and Gebremariam, B., 2017. Effect of land use land cover dynamics on hydrological response of watershed: case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5 (1), 1–16. doi:10.1016/j.iswcr.2017.03.002
  • Wittenberg, H., 2003. Effects of season and man‐made changes on baseflow and flow recession: case studies. Hydrological Processes, 17 (11), 2113–2123. doi:10.1002/hyp.1324
  • Wu, Y.C., Chen, Y.M., and Chu, J.L., 2010. Taiwan’s climate change trend. National Applied Research Laboratories Quarterly, 25, 40–46. (in Chinese).
  • Wu, P., Christidis, N., and Stott, P., 2013. Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change, 3 (9), 807–810. doi:10.1038/nclimate1932
  • Ye, S., et al., 2014. Regionalization of subsurface stormflow parameters of hydrologic models: derivation from regional analysis of streamflow recession curves. Journal of Hydrology, 519, 670–682. doi:10.1016/j.jhydrol.2014.07.017
  • Yeh, H.F., et al., 2014. Using limited weather data to estimate evapotranspiration. Crop, Environment & Bioinformatics, 11 (4), 203–218.
  • Yeh, H.F. and Huang, C.C., 2019. Evaluation of basin storage–discharge sensitivity in Taiwan using low‐flow recession analysis. Hydrological Processes, 33 (10), 1434–1447. doi:10.1002/hyp.13411
  • Yeh, H.F. and Tsao, J., 2020. Hydrological response to natural and anthropogenic factors in southern Taiwan. Sustainability, 12 (5), 1981. doi:10.3390/su12051981
  • Zecharias, Y.B. and Brutsaert, W., 1988. Recession characteristics of groundwater outflow and base flow from mountainous watersheds. Water Resources Research, 24 (10), 1651–1658. doi:10.1029/WR024i010p01651
  • Zhang, M., et al., 2017. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. Journal of Hydrology, 546, 44–59. doi:10.1016/j.jhydrol.2016.12.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.