3,989
Views
7
CrossRef citations to date
0
Altmetric
Special issue: Advancing socio-hydrology – Commentary

On capturing human agency and methodological interdisciplinarity in socio-hydrology research

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1905-1916 | Received 27 Jul 2022, Accepted 03 Aug 2022, Published online: 10 Oct 2022

References

  • Abebe, Y.A., et al., 2019. A coupled flood-agent-institution modelling (CLAIM) framework for urban flood risk management. Environmental Modelling and Software, 111, 483–492. doi:10.1016/j.envsoft.2018.10.015
  • Aghaie, V., Afshar, A., and Alizadeh, H., 2021. Socio-hydrological agent-based modelling for analysing the impacts of supply enhancement strategies on the cap-and-trade scheme. Hydrological Sciences Journal, 66 (4), 555–564. doi:10.1080/02626667.2021.1888954
  • Alonso Vicario, S., et al., 2020. Unravelling the influence of human behaviour on reducing casualties during flood evacuation. Hydrological Sciences Journal, 65 (14), 2359–2375. doi:10.1080/02626667.2020.1810254
  • Bandura, A., 2001. Social cognitive theory: an agentic perspective. Annual Review of Psychology, 52 (1), 1–26. doi:10.1146/annurev.psych.52.1.1
  • Bertassello, L., Levy, M.C., and Müller, M.F., 2021. Sociohydrology, ecohydrology, and the space-time dynamics of human-altered catchments. Hydrological Sciences Journal, 66 (9), 1393–1408. doi:10.1080/02626667.2021.1948550
  • Blair, P. and Buytaert, W., 2016. Socio-hydrological modelling: a review asking “why, what and how? Hydrology and Earth System Sciences, 20 (1), 443–478. doi:10.5194/hess-20-443-2016
  • Boelens, R., et al., 2016. Hydrosocial territories: a political ecology perspective. Water International, 41 (1), 1–14. doi:10.1080/02508060.2016.1134898
  • Bohensky, E.L. and Leitch, A.M., 2014. Framing the flood: a media analysis of themes of resilience in the 2011 Brisbane flood. Regional Environmental Change, 14 (2), 475–488. doi:10.1007/s10113-013-0438-2
  • Buarque, A.C.S., et al., 2020. Using historical source data to understand urban flood risk: a socio-hydrological modelling application at Gregório Creek, Brazil. Hydrological Sciences Journal, 65 (7), 1075–1083. doi:10.1080/02626667.2020.1740705
  • Burton, C. and Cutter, S.L., 2008. Levee failures and social vulnerability in the Sacramento-San Joaquin Delta Area, California. Natural Hazards Review, 9 (3), 136–149. doi:10.1061/(asce)1527-6988(2008)9:3(136)
  • Carr, et al., 2021. The potential of socio-hydrological models for exploring water quality management: a case study from Burkina Faso. Hydrological Sciences Journal. doi:10.1080/02626667.2021.2020276
  • Cash, D.W., et al., 2006. Scale and cross-scale dynamics : governance and information in a multilevel world. Ecology and Society, 11 (2), 8. http://www.ecologyandsociety.org/vol11/iss2/art8/.
  • Dau, Q.V. and Adeloye, A.J., 2021. Water security implications of climate and socio-economic stressors for river basin management. Hydrological Sciences Journal, 66 (7), 1097–1112. doi:10.1080/02626667.2021.1909032
  • De Filippo, D., et al., 2021. Assessing citizen science methods in IWRM for a new science shop: a bibliometric approach. Hydrological Sciences Journal, 66 (2), 179–192. doi:10.1080/02626667.2020.1851691
  • Di Baldassarre, G., et al., 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17 (8), 3295–3303. doi:10.5194/hess-17-3295-2013
  • Di Baldassarre, G., et al., 2015. Debates-Perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resources Research, 51 (6), 4770–4781. doi:10.1002/2014WR016416
  • Di Baldassarre, G., et al., 2021. Integrating multiple research methods to unravel the complexity of human‐water systems. AGU Advances, 2 (3), 1–6. doi:10.1029/2021av000473
  • Enteshari, S., Safavi, H.R., and van der Zaag, P., 2020. Simulating the interactions between the water and the socio-economic system in a stressed endorheic basin. Hydrological Sciences Journal, 65 (13), 2159–2174. doi:10.1080/02626667.2020.1802027
  • Etheridge, J.R., et al, 2020. Lessons learned from public participation in hydrologic engineering projects. Hydrological Sciences Journal, 65 (3), 325–334. doi:10.1080/02626667.2019.1700420
  • Fanta, V., Šálek, M., and Sklenicka, P., 2019. How long do floods throughout the millennium remain in the collective memory? Nature Communications, 10 (1), 1–9. doi:10.1038/s41467-019-09102-3
  • Fornés, J.M., López-Gunn, E., and Villarroya, F., 2021. Water in Spain: paradigm changes in water policy. Hydrological Sciences Journal, 66 (7), 1113–1123. doi:10.1080/02626667.2021.1918697
  • Frota, R.L., et al., 2021. “Network” socio-hydrology: a case study of causal factors that shape the Jaguaribe River Basin, Ceará-Brazil. Hydrological Sciences Journal, 66 (6), 935–950. doi:10.1080/02626667.2021.1913282
  • Garcia, M. and Islam, S., 2021. Water stress & water salience: implications for water supply planning. Hydrological Sciences Journal, 66 (6), 919–934. doi:10.1080/02626667.2021.1903474
  • Gaur, S., Bandyopadhyay, A., and Singh, R., 2021. Projecting land use growth and associated impacts on hydrological balance through scenario-based modelling in the Subarnarekha basin, India. Hydrological Sciences Journal, 66, 1997–2010. doi:10.1080/02626667.2021.1976408
  • Ghoreishi, M., Razavi, S., and Elshorbagy, A., 2021. Understanding human adaptation to drought: agent-based agricultural water demand modeling in the Bow River Basin, Canada. Hydrological Sciences Journal, 66 (3), 389–407. doi:10.1080/02626667.2021.1873344
  • Gibson, C.C., Ostrom, E., and Ahn, T.K., 2000. The concept of scale and the human dimensions of global change: a survey. Ecological Economics, 32, 217–239. doi:10.1016/S0921-8009(99)00092-0
  • Gober, P. and Wheater, H.S., 2015. Debates - Perspectives on socio-hydrology: modeling flood risk as a public policy problem. Water Resources Research, 51 (6), 4782–4788. doi:10.1002/2015WR016945
  • Haeffner, M., et al., 2021. Representation justice as a research agenda for socio-hydrology and water governance. Hydrological Sciences Journal, 66 (11), 1611–1624. doi:10.1080/02626667.2021.1945609
  • Haer, T., et al., 2020. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 60, 102009. doi:10.1016/j.gloenvcha.2019.102009
  • Hayashi, Y., et al., 2021. A transdisciplinary engagement with Australian Aboriginal water and the hydrology of a small bedrock island. Hydrological Sciences Journal, 66 (13), 1845–1856. doi:10.1080/02626667.2021.1974025
  • Homayounfar, M. and Muneepeerakul, R., 2021. On coupled dynamics and regime shifts in coupled human–water systems. Hydrological Sciences Journal, 66 (5), 769–776. doi:10.1080/02626667.2021.1883192
  • Hossain, M.B. and Mertig, A.G., 2020. Socio-structural forces predicting global water footprint: socio-hydrology and ecologically unequal exchange. Hydrological Sciences Journal, 65 (4), 495–506. doi:10.1080/02626667.2020.1714052
  • Janssen, M.A., et al., 2010. Lab experiments for the study of social-ecological systems. Science (New York, N.Y.), 328 (5978), 613–617. doi:10.1126/science.1183532
  • Janssen, M.A. and Anderies, J.M., 2013. A multi-method approach to study robustness of social–ecological systems: the case of small-scale irrigation systems. Journal of Institutional Economics, 9 (4), 427–447. doi:10.1017/S1744137413000180
  • Khalifa, M., et al., 2020. Exploring socio-hydrological determinants of crop yield in under-performing irrigation schemes: pathways for sustainable intensification. Hydrological Sciences Journal, 65 (2), 153–168. doi:10.1080/02626667.2019.1688333
  • Kim, H., Foster, E., and Chang, H., 2021. Transition of water quality policies in Oregon, USA and South Korea: a historical socio-hydrological approach. Hydrological Sciences Journal, 66, 2117–2131. doi:10.1080/02626667.2021.1986628
  • Konar, et al., 2019. Expanding the scope and foundation of sociohydrology as the science of coupled human‐water systems. Water Resources Research, 55, 874–887. doi:10.1029/2018WR024088
  • Laurita, B., et al., 2021. Stakeholder-based water allocation modelling and ecosystem services trade-off analysis: the case of El Carracillo region (Spain). Hydrological Sciences Journal, 66 (5), 777–794. doi:10.1080/02626667.2021.1895439
  • Leong, C., 2018. The role of narratives in sociohydrological models of flood behaviors. Water Resources Research, 54 (4), 3100–3121. doi:10.1002/2017WR022036
  • Lopez-Alvarez, B., et al., 2020. Estimation of the environment component of the water poverty index via remote sensing in semi-arid zones. Hydrological Sciences Journal, 65 (16), 2647–2657. doi:10.1080/02626667.2020.1839081
  • Loucks, D.P., 2015. Debates-Perspectives on socio-hydrology: simulating hydrologic-human interactions. Water Resources Research, 51 (6), 4789–4794. doi:10.1002/2015WR017002
  • Luan, D.M.H.P., et al., 2022. Socio-hydrological approach for farmer adaptability to hydrological changes: a case study in salinity-controlled areas of the Vietnamese Mekong Delta. Hydrological Sciences Journal, 67, 495507, 67, 495507. doi:10.1080/02626667.2022.2030865
  • Ludy, J. and Kondolf, G.M., 2012. Flood risk perception in lands ‘protected’ by 100-year levees. Natural Hazards, 61 (2), 829–842. doi:10.1007/s11069-011-0072-6
  • Lyu, H., et al., 2020. Prospects of interventions to alleviate rural–urban migration in Jiangsu Province, China based on sensitivity and scenario analysis. Hydrological Sciences Journal, 65 (13), 2175–2184. doi:10.1080/02626667.2020.1802030
  • Mård, J., Di Baldassarre, G., and Mazzoleni, M., 2018. Nighttime light data reveal how flood protection shapes human proximity to rivers. Science Advances, 4 (8), eaar5779. doi:10.1126/sciadv.aar5779
  • McKee, B., et al., 2020. Floridians’ propensity to support ad valorem water billing increases to protect water supply: a panel evaluation. Hydrological Sciences Journal, 65 (1), 1–11. doi:10.1080/02626667.2019.1677906
  • Medeiros, P. and Sivapalan, M., 2020. From hard-path to soft-path solutions: slow–fast dynamics of human adaptation to droughts in a water scarce environment. Hydrological Sciences Journal, 65 (11), 1803–1814. doi:10.1080/02626667.2020.1770258
  • Michaelis, T., Brandimarte, L., and Mazzoleni, M., 2020. Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrological Sciences Journal, 65 (9), 1458–1473. doi:10.1080/02626667.2020.1750617
  • Mondino, E., et al., 2020. Exploring changes in hydrogeological risk awareness and preparedness over time: a case study in northeastern Italy. Hydrological Sciences Journal, 65 (7), 1049–1059. doi:10.1080/02626667.2020.1729361
  • Montz, B.E. and Tobin, G.A., 2008. Livin’ large with levees: lessons learned and lost. Natural Hazards Review, 9 (3), 150–157. doi:10.1061/(ASCE)1527-6988(2008)9:3(150)
  • Nardi, F., et al., 2021. Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrological Sciences Journal, 1–18. doi:10.1080/02626667.2020.1849707
  • Neupane, B., Vu, T.M., and Mishra, A.K., 2021. Evaluation of land-use, climate change, and low-impact development practices on urban flooding. Hydrological Sciences Journal, 66 (12), 1729–1742. doi:10.1080/02626667.2021.1954650
  • Olivier, T., 2019. How do institutions address collective-action problems? Bridging and bonding in institutional design. Political Research Quarterly, 72 (1), 162–176. doi:10.1177/1065912918784199
  • Oneda, T.M.S. and Barros, V.G., 2021. On stormwater management master plans: comparing developed and developing cities. Hydrological Sciences Journal, 66 (1), 1–11. doi:10.1080/02626667.2020.1853131
  • Oreskes, N., 2004. Science and public policy: what’s proof got to do with it? Environtal Science and Policy, 7, 369–383. doi:10.1016/j.envsci.2004.06.002
  • Ostrom, E., 1998. A behavioral approach to the rational choice theory of collective action: presidential address, American Political Science Association, 1997. The American Political Science Review, 92 (1), 1–22. doi:10.2307/2585925
  • Ostrom, E., 2010. Polycentric systems for coping with collective action and global environmental change. Global Environmental Change, 20 (4), 550–557. doi:10.1016/j.gloenvcha.2010.07.004
  • Ostrom, E., 2011. Background on the institutional analysis and development framework. Policy Studies Journal, 39 (1), 7–27. doi:10.1111/j.1541-0072.2010.00394.x
  • Palop-Donat, C., et al., 2020. Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain). Hydrological Sciences Journal, 65 (7), 1060–1074. doi:10.1080/02626667.2020.1734812
  • Pande, S. and Ertsen, M., 2014. Endogenous change: on cooperation and water availability in two ancient societies. Hydrology and Earth System Sciences, 18, 1745–1760. doi:10.5194/hess-18-1745-2014
  • Pande, S. and Sivapalan, M., 2017. Progress in socio-hydrology: a meta-analysis of challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 4 (4), e1193. doi:10.1002/wat2.1193
  • Philip, E., 2021. Coupling sustainable development goal 11.3.1 with current planning tools: city of Hamilton, Canada. Hydrological Sciences Journal, 66 (7), 1124–1131. doi:10.1080/02626667.2021.1918340
  • Poteete, A.R., Ostrom, E., and Janssen, M.A., 2010. Working together: collective action, the commons, and multiple methods in practice. Princeton, New Jersey, USA: Princeton University Press.
  • Pouladi, P., et al., 2020. Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 65 (8), 1249–1261. doi:10.1080/02626667.2020.1749763
  • Ridolfi, E., Albrecht, F., and Di Baldassarre, G., 2020. Exploring the role of risk perception in influencing flood losses over time. Hydrological Sciences Journal, 65 (1), 12–20. doi:10.1080/02626667.2019.1677907
  • Ross, A. and Chang, H., 2020. Socio-hydrology with hydrosocial theory: two sides of the same coin? Hydrological Sciences Journal, 65 (9), 1443–1457. doi:10.1080/02626667.2020.1761023
  • Ross, A.E. and Chang, H., 2021. Modeling the system dynamics of irrigators’ resilience to climate change in a glacier-influenced watershed. Hydrological Sciences Journal, 66 (12), 1743–1757. doi:10.1080/02626667.2021.1962883
  • Sarband, E.M., et al., 2021. Adaptation of a compromise programming approach for evaluating the localized impacts of water allocation. Hydrological Sciences Journal, 66 (8), 1275–1287. doi:10.1080/02626667.2021.1912755
  • Siddiki, S., et al., 2019. Institutional analysis with the institutional grammar. Policy Studies Journal, 47, 324–352. doi:10.1111/psj.12361
  • Sivapalan, M., 2015. Debates - perspectives on socio-hydrology: changing water systems and the ‘tyranny of small problems’ - socio-hydrology. Water Resources Research, 51 (6), 4795–4805. doi:10.1002/2015WR017080
  • Souza, F.A.A., et al., 2021. Blue and grey urban water footprints through citizens’ perception and time series analysis of Brazilian dynamics. Hydrological Sciences Journal, 66 (3), 408–421. doi:10.1080/02626667.2021.1879388
  • Tamburino, L., Di Baldassarre, G., and Vico, G., 2020. Water management for irrigation, crop yield and social attitudes: a socio-agricultural agent-based model to explore a collective action problem. Hydrological Sciences Journal, 65 (11), 1815–1829. doi:10.1080/02626667.2020.1769103
  • Teweldebrihan, M.D., Pande, S., and McClain, M., 2020. The dynamics of farmer migration and resettlement in the Dhidhessa River Basin, Ethiopia. Hydrological Sciences Journal, 65 (12), 1985–1993. doi:10.1080/02626667.2020.1789145
  • Thaler, T., 2021. Social justice in socio-hydrology—how we can integrate the two different perspectives. Hydrological Sciences Journal, 66 (10), 1503–1512. Available from: https://doi.org/10.1080/02626667.2021.1950916.
  • Torso, K., et al., 2020. Participatory research approaches in mining-impacted hydrosocial systems. Hydrological Sciences Journal, 65 (14), 2337–2349. doi:10.1080/02626667.2020.1808218
  • Tress, G., Tress, B., and Fry, G., 2005. Clarifying integrative research concepts in landscape ecology. Landscape Ecology, 20 (4), 479–493. doi:10.1007/s10980-004-3290-4
  • Troy, T.J., Pavao-Zuckerman, M., and Evans, T.P., 2015. Debates-Perspectives on socio-hydrology: socio-hydrologic modeling: tradeoffs, hypothesis testing, and validation. Water Resources Research, 51 (6), 4806–4814. doi:10.1002/2015WR017046
  • Vanelli, F.M. and Kobiyama, M., 2021. How can socio-hydrology contribute to natural disaster risk reduction? Hydrological Sciences Journal, 66 (12), 1758–1766. doi:10.1080/02626667.2021.1967356
  • Veloso, C., et al., 2022. Preparedness against floods in nearly pristine socio-hydrological systems. Hydrological Sciences Journal, 67 (3), 319–327. doi:10.1080/02626667.2021.2023156
  • Viglione, A., et al., 2014. Insights from socio-hydrology modelling on dealing with flood risk - Roles of collective memory, risk-taking attitude and trust. Journal of Hydrology, 518 (Part A), 71–82. doi:10.1016/j.jhydrol.2014.01.018
  • Viola, F., Caracciolo, D., and Deidda, R., 2021. Modelling the mutual interactions between hydrology, society and water supply systems. Hydrological Sciences Journal, 66 (8), 1265–1274. doi:10.1080/02626667.2021.1909729
  • Waring, T.M., et al., 2015. A multilevel evolutionary framework for sustainability analysis. Ecology and Society, 20 (2), art34. doi:10.5751/ES-07634-200234
  • White, G.F., 1942. Human adjustment to floods. Unpublished PhD. Department of Geography, University of Chicago.
  • Wine, M.L., 2020. Climatization of environmental degradation: a widespread challenge to the integrity of earth science. Hydrological Sciences Journal, 65 (6), 867–883. doi:10.1080/02626667.2020.1720024
  • Yu, D.J., et al., 2016. Learning for resilience-based management: generating hypotheses from a behavioral study. Global Environmental Change, 37, 69–78. doi:10.1016/j.gloenvcha.2016.01.009
  • Yu, D.J., et al., 2017. Incorporating institutions and collective action into a sociohydrological model of flood resilience. Water Resources Research, 53 (2), 1336–1353. doi:10.1002/2016WR019746
  • Yu, D.J., et al., 2020. Socio-hydrology: an interplay of design and self-organization in a multilevel world. Ecology and Society, 25, art22. doi:10.5751/ES-11887-250422