407
Views
0
CrossRef citations to date
0
Altmetric
WINNER OF THE 2022 FRANCES WATKINS MEMORIAL AWARD

Identifying potential systemic changes in a regulated river: a diagnostic methodology based on whiteness property of innovation sequences

&
Pages 1954-1970 | Received 13 Mar 2022, Accepted 22 Jul 2022, Published online: 10 Oct 2022

References

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. doi:10.1109/TAC.1974.1100705
  • Allen, J.R.L., 1974. Reaction, relaxation and lag in natural sedimentary systems: general principles, examples and lessons. Earth-Science Reviews, 10 (4), 263–342. doi:10.1016/0012-8252(74)90109-3
  • Arrigoni, A.S., Greenwood, M.C., and Moore, J.N., 2010. Relative impact of anthropogenic modifications versus climate change on the natural flow regimes of rivers in the Northern Rocky Mountains, United States. Water Resources Research, 46 (12). doi:10.1029/2010WR009162
  • Bellman, R., 1966. Dynamic programming. Science, 153 (3731), 34–37. doi:10.1126/science.153.3731.34
  • Bennett, N.D., et al., 2013. Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20. doi:10.1016/j.envsoft.2012.09.011
  • Brierley, G.J. and Fryirs, K.A., 2013. Geomorphology and river management: applications of the river styles framework. Chichester, UK: John Wiley & Sons, Ltd.
  • Buechel, M., Slater, L., and Dadson, S., 2022. Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Communications Earth & Environment, 3 (1), 1–10. doi:10.1038/s43247-021-00334-0
  • Butts, M.B., et al., 2004. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298 (1–4), 242–266. doi:10.1016/j.jhydrol.2004.03.042
  • Ciria, T.P., Labat, D., and Chiogna, G., 2019. Detection and interpretation of recent and historical streamflow alterations caused by river damming and hydropower production in the Adige and Inn River basins using continuous, discrete and multiresolution wavelet analysis. Journal of Hydrology, 578, 124021. doi:10.1016/j.jhydrol.2019.124021
  • Cunge, J.A., 1969. On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7 (2), 205–230. doi:10.1080/00221686909500264
  • Feng, P., Wu, J., and Li, J., 2019. Changes in flood characteristics and the flood driving mechanism in the mountainous Haihe River Basin, China. Hydrological Sciences Journal, 64 (16), 1997–2005. doi:10.1080/02626667.2019.1619931
  • Fryirs, K.A., 2017. River sensitivity: a lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42 (1), 55–70. doi:10.1002/esp.3940
  • Georgakakos, A.P., Georgakakos, K.P., and Baltas, E.A., 1990. A state‐space model for hydrologic river routing. Water Resources Research, 26 (5), 827–838.
  • Graf, W.L., 1977. The rate law in fluvial geomorphology. American Journal of Science, 277 (2), 178–191. doi:10.2475/ajs.277.2.178
  • Graf, W.L., 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79 (3–4), 336–360. doi:10.1016/j.geomorph.2006.06.022
  • Gustafsson, F., 2000. Adaptive filtering and change detection. Vol. 1, New York: Wiley.
  • Hall, J., et al., 2014. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 18 (7), 2735–2772. doi:10.5194/hess-18-2735-2014
  • Hasanvand, K., Hashemi, M.R., and Abedini, M.J., 2013. Development of an accurate time integration technique for the assessment of Q-based versus h-based formulations of the diffusion wave equation for flow routing. Journal of Hydraulic Engineering, 139 (10), 1079–1088. doi:10.1061/(ASCE)HY.1943-7900.0000773
  • Haykin, S., 2004. Kalman filtering and neural networks. Vol. 47. New York: John Wiley & Sons.
  • Hendricks Franssen, H.J. and Kinzelbach, W., 2008. Real‐time groundwater flow modeling with the ensemble Kalman filter: joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44 (9). doi:10.1029/2007WR006505
  • Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82 (1), 35–45. doi:10.1115/1.3662552
  • Killick, R., Fearnhead, P., and Eckley, I.A., 2012. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107 (500), 1590–1598. doi:10.1080/01621459.2012.737745
  • Kim, D.H. and Georgakakos, A.P., 2014. Hydrologic routing using nonlinear cascaded reservoirs. Water Resources Research, 50 (8), 7000–7019. doi:10.1002/2014WR015662
  • Lavielle, M., 2005. Using penalized contrasts for the change-point problem. Signal Processing, 85 (8), 1501–1510. doi:10.1016/j.sigpro.2005.01.012
  • Leisenring, M. and Moradkhani, H., 2012. Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation. Journal of Hydrology, 468, 268–282. doi:10.1016/j.jhydrol.2012.08.049
  • Mathews, R. and Richter, B.D., 2007. Application of the indicators of hydrologic alteration software in environmental flow setting 1. JAWRA Journal of the American Water Resources Association, 43 (6), 1400–1413. doi:10.1111/j.1752-1688.2007.00099.x
  • Matteson, D.S. and James, N.A., 2014. A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109 (505), 334–345. doi:10.1080/01621459.2013.849605
  • Mazzoleni, M., et al., 2018. Real-time assimilation of streamflow observations into a hydrological routing model: effects of model structures and updating methods. Hydrological Sciences Journal, 63 (3), 386–407. doi:10.1080/02626667.2018.1430898
  • McCarthy, G.T., 1938. The unit hydrograph and flood routing. In Proceedings of conference of North Atlantic Division, US Army Corps of Engineers. Concord, MA, 608–609.
  • Meditch, J.S., 1969. Stochastic optimal linear estimation and control. New York: McGraw-Hill.
  • Moradkhani, H., et al., 2005. Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources, 28 (2), 135–147. doi:10.1016/j.advwatres.2004.09.002
  • Pathiraja, S., et al., 2016. Hydrologic modeling in dynamic catchments: a data assimilation approach. Water Resources Research, 52 (5), 3350–3372. doi:10.1002/2015WR017192
  • Petts, G.E., 1987. Time-scales for ecological change in regulated rivers. In: J.F. Craig and J.B. Kemper, eds. Regulated streams. Boston, MA: Springer, 257–266.
  • Phillips, J.D. and Van Dyke, C., 2016. Principles of geomorphic disturbance and recovery in response to storms. Earth Surface Processes and Landforms, 41 (7), 971–979. doi:10.1002/esp.3912
  • Poeppl, R.E., Keesstra, S.D., and Maroulis, J., 2017. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, 237–250. doi:10.1016/j.geomorph.2016.07.033
  • Poff, N.L., et al., 1997. The natural flow regime. BioScience, 47 (11), 769–784. doi:10.2307/1313099
  • Polhill, J.G., et al., 2016. Modelling systemic change in coupled socio-environmental systems. Environmental Modelling and Software, 75, 318–332. doi:10.1016/j.envsoft.2015.10.017
  • Rajaram, H. and Georgakakos, K.P., 1989. Recursive parameter estimation of hydrologic models. Water Resources Research, 25 (2), 281–294. doi:10.1029/WR025i002p00281
  • Reichle, R.H., Crow, W.T., and Keppenne, C.L., 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resources Research, 44 (3). doi:10.1029/2007WR006357
  • Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics, 6 (2), 461–464. doi:10.1214/aos/1176344136
  • Sharma, S., Swayne, D.A., and Obimbo, C., 2016. Trend analysis and change point techniques: a survey. Energy, Ecology and Environment, 1 (3), 123–130. doi:10.1007/s40974-016-0011-1
  • Simon, D., 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Hoboken, NJ: Wiley-Interscience.
  • Singh, V.P. and Scarlatos, P.D., 1987. Analysis of nonlinear Muskingum flood routing. Journal of Hydraulic Engineering, 113 (1), 61–79. doi:10.1061/(ASCE)0733-9429(1987)113:1(61)
  • Slater, L.J., et al., 2021. Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrology and Earth System Sciences, 25 (7), 3897–3935. doi:10.5194/hess-25-3897-2021
  • Slater, L.J., Singer, M.B., and Kirchner, J.W., 2015. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophysical Research Letters, 42 (2), 370–376. doi:10.1002/2014GL062482
  • Smith, P.J., et al., 2013. Data assimilation for state and parameter estimation: application to morphodynamic modelling. Quarterly Journal of the Royal Meteorological Society, 139 (671), 314–327. doi:10.1002/qj.1944
  • Todini, E., 1978. Mutually interactive state-parameter (MISP) estimation. In: Proceedings of AGU Chapman conference, 22–24 May 1978 Pittsburgh, PA.
  • Vatankhah, A.R., 2021. The lumped Muskingum flood routing model revisited: the storage relationship. Hydrological Sciences Journal, 66 (11), 1625–1637. doi:10.1080/02626667.2021.1957475
  • Verstegen, J.A., et al., 2016. Detecting systemic change in a land use system by Bayesian data assimilation. Environmental Modelling and Software, 75, 424–438. doi:10.1016/j.envsoft.2015.02.013
  • Vrugt, J.A. and Sadegh, M., 2013. Toward diagnostic model calibration and evaluation: approximate Bayesian computation. Water Resources Research, 49 (7), 4335–4345. doi:10.1002/wrcr.20354
  • Williams, G.P. and Wolman, M.G., 1984. Downstream effects of dams on alluvial rivers. Vol. 1286. Washington, DC: US Government Printing Office.
  • Wu, B., Zheng, S., and Thorne, C.R., 2012. A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Progress in Physical Geography, 36 (5), 575–597. doi:10.1177/0309133312436569
  • Zhou, C., et al., 2019. Comparative analysis of nonparametric change-point detectors commonly used in hydrology. Hydrological Sciences Journal, 64 (14), 1690–1710. doi:10.1080/02626667.2019.1669792
  • Zuo, Q., et al., 2019. Quantitative research on the water ecological environment of dam-controlled rivers: case study of the Shaying River, China. Hydrological Sciences Journal, 64 (16), 2129–2140. doi:10.1080/02626667.2019.1669794