268
Views
6
CrossRef citations to date
0
Altmetric
Research Article

How to enhance the inverse distance weighting method to detect the precipitation pattern in a large-scale watershed

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2014-2028 | Received 08 Apr 2022, Accepted 23 Aug 2022, Published online: 17 Oct 2022

References

  • Alemohammad, S.H., et al., 2015. Characterization of precipitation product errors across the United States using multiplicative triple collocation. Hydrology and Earth System Sciences, 19 (8), 3489–3503. doi:10.5194/hess-19-3489-2015.
  • Alijanian, M., et al., 2017. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology, 37 (14), 4896–4914. doi:10.1002/joc.5131.
  • Alsafadi, K., et al., 2021. Fine-resolution precipitation mapping over Syria using local regression and spatial interpolation. Atmospheric Research, 256, 105524. doi:10.1016/j.atmosres.2021.105524
  • Amini, Y. and Nasseri, M., 2021. Improving spatial estimation of hydrologic attributes via optimized moving search strategies. Arabian Journal of Geosciences, 14 (8). Arabian Journal of Geosciences. doi:10.1007/s12517-021-06961-3.
  • Anees, M.T., et al., 2018. Spatial estimation of average daily precipitation using multiple linear regression by using topographic and wind speed variables in tropical climate. Journal of Environmental Engineering and Landscape Management, 26 (4), 299–316. doi:10.3846/jeelm.2018.6337.
  • Ashouri, H., et al., 2015. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96 (1), 69–83. doi:10.1175/BAMS-D-13-00068.1.
  • Ayvaz, M.T., 2007. Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm. Advances in Water Resources, 30 (11), 2326–2338. doi:10.1016/j.advwatres.2007.05.009.
  • Banimahd, S.A., et al., 2016. Evaluation of groundwater potential recharge models considering estimated bare soil evaporation, in a semi-arid foothill region. Hydrological Sciences Journal, 61 (1), 162–172. doi:10.1080/02626667.2014.959957.
  • Bashir, B. and Fouli, H., 2015. Studying the spatial distribution of maximum monthly rainfall in selected regions of Saudi Arabia using geographic information systems. Arabian Journal of Geosciences, 8 (11), 9929–9943. doi:10.1007/s12517-015-1870-z.
  • Bayat, B., et al., 2013. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theoretical and Applied Climatology, 113 (3–4), 429–444. doi:10.1007/s00704-012-0795-7.
  • Bayat, B., Nasseri, M., and Delmelle, E., 2021. Uncertainty-based rainfall network design using a fuzzy spatial interpolation method. Applied Soft Computing, 106, 107296. doi:10.1016/j.asoc.2021.107296
  • Beck, H.E., et al., 2017. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21 (12), 6201–6217. doi:10.5194/hess-21-6201-2017.
  • Beck, H.E., et al., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214. doi:10.1038/sdata.2018.214
  • Beck, H.E., et al., 2019. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bulletin of the American Meteorological Society, 100 (3), 473–500. doi:10.1175/BAMS-D-17-0138.1.
  • Carle, S.F. and Fogg, G.E., 1996. Transition probability-based indicator geostatistics. Mathematical Geology, 28 (4), 453–476. doi:10.1007/BF02083656.
  • Carle, S.F. and Fogg, G.E., 1997. Modeling spatial variability with one and multidimensional continuous-lag markov chains. Mathematical Geology, 29 (7), 891–918. doi:10.1023/A:1022303706942.
  • Chen, C., et al., 2015. A generalization of inverse distance weighting method via kernel regression and its application to surface modeling. Arabian Journal of Geosciences, 8 (9), 6623–6633. doi:10.1007/s12517-014-1717-z.
  • Daly, C., et al., 2002. A knowledge-based approach to the statistical mapping of climate. Climate Research, 22 (7), 99–113. doi:10.3354/cr022099.
  • Daly, C., et al., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 (15), 2031–2064. doi:10.1002/joc.1688.
  • Darand, M., Amanollahi, J., and Zandkarimi, S., 2017. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmospheric Research, 190, 121–127. doi:10.1016/j.atmosres.2017.02.011
  • Dodangeh, E., et al., 2020. Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. doi:10.1016/j.jhydrol.2020.125423
  • Dowd, M. and Meyer, R., 2003. A Bayesian approach to the ecosystem inverse problem. Ecological Modelling, 168 (1–2), 39–55. doi:10.1016/S0304-3800(03)00186-8.
  • Fallah, A., et al., 2020. Evaluation of precipitation datasets against local observations in southwestern Iran. International Journal of Climatology, 40 (9), 4102–4116. doi:10.1002/joc.6445.
  • Geem, Z.W., Kim, J.H., and Loganathan, G.V., 2001. A new heuristic optimization algorithm: harmony search. Simulation, 76 (2), 60–68. doi:10.1177/003754970107600201.
  • Ghajarnia, N., Liaghat, A., and Daneshkar Arasteh, P., 2015. Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmospheric Research, 158-159, 50–65. doi:10.1016/j.atmosres.2015.02.010
  • Ghomlaghi, A., Nasseri, M., and Bayat, B., 2022. Comparing and contrasting the performance of high-resolution precipitation products via error decomposition and triple collocation: an application to different climate classes of the central Iran. Journal of Hydrology, 612, 128298. doi:10.1016/j.jhydrol.2022.128298
  • Ghozi, M. and Budiati, A., 2018. Comparison of genetic algorithm and harmony search method for 2D geometry optimization, and B. H. Setiadji, et al., Eds. MATEC Web of Conferences, Rostov-on-Don, Russia. 159, 01009. doi:10.1051/matecconf/201815901009.
  • González-Gambau, V., et al., 2020. Triple collocation analysis for two error-correlated datasets: application to L-band brightness temperatures over land. Remote Sensing, 12 (20), 3381. doi:10.3390/rs12203381.
  • Hersbach, H., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. doi:10.1002/qj.3803.
  • Hsu, K., et al., 1997. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36 (9), 1176–1190. doi:10.1175/1520-0450(1997)036.
  • Huang, H., et al., 2019. A new spatial precipitation interpolation method based on the information diffusion principle. Stochastic Environmental Research and Risk Assessment, 33 (3), 765–777. doi:10.1007/s00477-019-01658-2.
  • Huffman, G.J., et al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8 (1), 38–55. doi:10.1175/JHM560.1.
  • Hussain, F., Nabi, G., and Wu, R.-S., 2021. Spatiotemporal rainfall distribution of Soan river basin, Pothwar region, Pakistan. Advances in Meteorology. ( L. Gimeno, Ed.), 6656732. doi:10.1155/2021/6656732.
  • Jalili Pirani, F. and Modarres, R., 2020. Geostatistical and deterministic methods for rainfall interpolation in the Zayandeh Rud basin, Iran. Hydrological Sciences Journal, 65 (16), 2678–2692. doi:10.1080/02626667.2020.1833014.
  • Jeong, H.-G., et al., 2020. Improvement of daily precipitation estimations using PRISM with inverse-distance weighting. Theoretical and Applied Climatology, 139 (3–4), 923–934. doi:10.1007/s00704-019-03012-6.
  • Jin, X., et al., 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383 (3–4), 147–155. doi:10.1016/j.jhydrol.2009.12.028.
  • Karahan, H., Gurarslan, G., and Geem, Z.W., 2013. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. Journal of Hydrologic Engineering, 18 (3), 352–360. doi:10.1061/(ASCE)HE.1943-5584.0000608.
  • Khan, L., Mumtaz, S., and Khattak, A., 2012. Comparison of genetic algorithm and harmony search for generator maintenance scheduling. Mehran University Research Journal of Engineering and Technology, 31 (4), 587–598. Retrieved from: http://publications.muet.edu.pk/research_papers/pdf/pdf691.pdf
  • Kim, J.H., Geem, Z.W., and Kim, E.S., 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37 (5), 1131–1138. doi:10.1111/j.1752-1688.2001.tb03627.x.
  • Kim, Y.-H., Yoon, Y., and Geem, Z.W., 2019. A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm and Evolutionary Computation, 44, 130–135. doi:10.1016/j.swevo.2018.01.004
  • Knoben, W.J.M., Freer, J.E., and Woods, R.A., 2019. Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. doi:10.5194/hess-23-4323-2019.
  • Li, C., Tang, G., and Hong, Y., 2018. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: applicability of the triple collocation method across Mainland China. Journal of Hydrology, 562, 71–83. doi:10.1016/j.jhydrol.2018.04.039
  • Mahbod, M., Veronesi, F., and Shirvani, A., 2019. An evaluative study of TRMM precipitation estimates over multi-day scales in a semi-arid region, Iran. International Journal of Remote Sensing, 40 (11), 4143–4174. Taylor & Francis. doi:10.1080/01431161.2018.1562258.
  • Maleika, W., 2020. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics, 12 (4), 397–407. doi:10.1007/s12518-020-00307-6.
  • Massari, C., Crow, W., and Brocca, L., 2017. An assessment of the performance of global rainfall estimates without ground-based observations. Hydrology and Earth System Sciences, 21 (9), 4347–4361. doi:10.5194/hess-21-4347-2017.
  • McColl, K.A., et al., 2014. Extended triple collocation: estimating errors and correlation coefficients with respect to an unknown target. Geophysical Research Letters, 41 (17), 6229–6236. doi:10.1002/2014GL061322.
  • Mendez, M., et al., 2019. Generation of monthly precipitation climatologies for Costa Rica using irregular rain-gauge observational networks. Water, 11 (1), 70. doi:10.3390/w11010070.
  • Nasseri, M., et al., 2013. Uncertainty assessment of monthly water balance models based on incremental modified fuzzy extension principle method. Journal of Hydroinformatics, 15 (4), 1340–1360. doi:10.2166/hydro.2013.159.
  • Nasseri, M., Schoups, G., and Taheri, M., 2022. A spatiotemporal framework to calibrate high‐resolution global monthly precipitation products: an application to the Urmia Lake Watershed in Iran. International Journal of Climatology, 42 (4), 2169–2194. doi:10.1002/joc.7358.
  • Ritzi, R.W., 2000. Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resources Research, 36 (11), 3375–3381. doi:10.1029/2000WR900139.
  • Shahidi, M. and Abedini, M.J., 2018. Optimal selection of number and location of rain gauge stations for areal estimation of annual rainfall using a procedure based on inverse distance weighting estimator. Paddy and Water Environment, 16 (3), 617–629. doi:10.1007/s10333-018-0654-y.
  • Shi, T., et al., 2015. Spatiotemporal interpolation of rainfall by combining BME theory and satellite rainfall estimates. Atmosphere (Basel), 6 (9), 1307–1326. doi:10.3390/atmos6091307.
  • Stoffelen, A., 1998. Toward the true near-surface wind speed: error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans, 103 (C4), 7755–7766. doi:10.1029/97JC03180.
  • Taheri, M., et al., 2020. Localized linear regression methods for estimating monthly precipitation grids using elevation, rain gauge, and TRMM data. Theoretical and Applied Climatology, 142 (1–2), 623–641. doi:10.1007/s00704-020-03320-2.
  • Tan, J., et al., 2021. Coupling random forest and inverse distance weighting to generate climate surfaces of precipitation and temperature with multiple-covariates. Journal of Hydrology, 598, 126270. doi:10.1016/j.jhydrol.2021.126270
  • Teegavarapu, R.S.V., et al., 2018. Infilling missing precipitation records using variants of spatial interpolation and data-driven methods: use of optimal weighting parameters and nearest neighbour-based corrections. International Journal of Climatology, 38 (2), 776–793. doi:10.1002/joc.5209.
  • Teegavarapu, R.S.V. and Chandramouli, V., 2005. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312 (1–4), 191–206. doi:10.1016/j.jhydrol.2005.02.015.
  • Tiwari, S., Kumar Jha, S., and Sivakumar, B., 2019. Reconstruction of daily rainfall data using the concepts of networks: accounting for spatial connections in neighborhood selection. Journal of Hydrology, 579, 124185. doi:10.1016/j.jhydrol.2019.124185
  • Tomczak, M., 1998. Spatial interpolation and its uncertainty using automated anisotropic Inverse Distance Weighting (IDW) - cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2 (2), 18–30.
  • Xiong, L., et al., 2009. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrological Sciences Journal, 54 (5), 852–871. doi:10.1623/hysj.54.5.852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.