211
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Uncertainty sources in flood projections over contrasting hydrometeorological regimes

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 2232-2253 | Received 10 Jun 2021, Accepted 13 Sep 2022, Published online: 14 Nov 2022

References

  • AghaKouchak, A., et al., 2012. Extremes in a changing climate: detection, analysis and uncertainty. Springer Dordrecht: Springer Science & Business Media.
  • Ajami, N.K., et al., 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298 (1), 112–135. doi:10.1016/j.jhydrol.2004.03.033
  • Arsenault, R., et al., 2014. Comparison of stochastic optimization algorithms in hydrological model calibration. Journal of Hydrologic Engineering, 19 (7), 1374–1384. doi:10.1061/(ASCE)HE.1943-5584.0000938
  • Arsenault, R., et al., 2019. Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 64 (11), 1297–1311. doi:10.1080/02626667.2019.1639716
  • Arsenault, R., et al., 2020a. NAC2H: the North-American Climate Change and hydroclimatology dataset. Water Resources Research, n/a(n/a), e2020WR027097.
  • Arsenault, R., et al., 2020b. A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds. Scientific Data, 7 (1), 243. doi:10.1038/s41597-020-00583-2
  • Asadzadeh, M. and Tolson, B.A., 2009. A new multi-objective algorithm, pareto archived DDS. Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers. Montreal, Québec, Canada: ACM, 1963–1966.
  • Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal, 61 (9), 1652–1665. doi:10.1080/02626667.2015.1031761
  • Blöschl, G. and Montanari, A., 2010. Climate change impacts—throwing the dice? Hydrological processes, 24 (3), 374–381.
  • Bosshard, T., et al., 2013. Quantifying uncertainty sources in an ensemble of hydrological climate‐impact projections. Water Resources Research, 49 (3), 1523–1536. doi:10.1029/2011WR011533
  • Castaneda-Gonzalez, M., et al., 2019. Sensitivity of seasonal flood simulations to regional climate model spatial resolution. Climate Dynamics, 53 (7), 4337–4354. doi:10.1007/s00382-019-04789-y
  • Castellarin, A., et al., 2012. Review of applied statistical methods for flood frequency analysis in Europe. NERC/Centre for Ecology & Hydrology.
  • Chan, W.C.H., et al., 2020. Uncertainty assessment in river flow projections for Ethiopia’s upper awash basin using multiple GCMs and hydrological models. Hydrological Sciences Journal, 65 (10), 1720–1737. doi:10.1080/02626667.2020.1767782
  • Chegwidden, O.S., et al., 2019. How do modeling decisions affect the spread among hydrologic climate change projections? Exploring a large ensemble of simulations across a diversity of hydroclimates. Earth’s Future, 7 (6), 623–637. doi:10.1029/2018EF001047
  • Chen, J., et al., 2013a. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49 (7), 4187–4205. doi:10.1002/wrcr.20331
  • Chen, J., et al., 2013b. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology, 479, 200–214. doi:10.1016/j.jhydrol.2012.11.062
  • Chen, J., et al., 2019. Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology. Climatic Change, 153 (3), 361–377. doi:10.1007/s10584-019-02393-x
  • Chen, J., Brissette, F.P., and Leconte, R., 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 401 (3), 190–202. doi:10.1016/j.jhydrol.2011.02.020
  • Collet, L., Beevers, L., and Prudhomme, C., 2017. Assessing the impact of climate change and extreme value uncertainty to extreme flows across Great Britain. Water, 9 (2), 103. doi:10.3390/w9020103
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water resources research, 48(5), 1-17.
  • Cunnane, C. 1989. Statistical distributions for flood frequency analysis. Operational hydrology report (WMO).
  • Dallaire, G., et al., 2021. Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America. Hydrological Sciences Journal, 66 (4), 689–702. doi:10.1080/02626667.2021.1888955
  • Das, J. and Umamahesh, N.V., 2018. Assessment of uncertainty in estimating future flood return levels under climate change. Natural Hazards, 93 (1), 109–124. doi:10.1007/s11069-018-3291-2
  • Déqué, M., et al., 2007. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change, 81 (1), 53–70. doi:10.1007/s10584-006-9228-x
  • Deser, C., et al., 2020. Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10 (4), 277–286. doi:10.1038/s41558-020-0731-2
  • Escalante-Sandoval, C. and García-Espinoza, E., 2014. Analysis of annual flood peak records in Mexico. WIT Transactions on Information Communication Technology, 47, 49–60.
  • Falloon, P., et al., 2014. Ensembles and uncertainty in climate change impacts. Frontiers in Environmental Science, 2, 33. doi:10.3389/fenvs.2014.00033
  • Fortin, V. and Turcotte, R., 2006. Le modèle hydrologique MOHYSE. Montréal: Département des sciences de la terre et de l’atmosphère. Université du Québec à Montréal, Note de cours pour SCA7420.
  • Giorgi, F. and Gutowski, W.J., 2015. Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources, 40 (1), 467–490. doi:10.1146/annurev-environ-102014-021217
  • Giuntoli, I., et al., 2018. Uncertainties in projected runoff over the conterminous United States. Climatic Change, 150 (3), 149–162. doi:10.1007/s10584-018-2280-5
  • Gosling, S.N., et al., 2011. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences, 15 (1), 279–294. doi:10.5194/hess-15-279-2011
  • Graham, L.P., Andréasson, J., and Carlsson, B., 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the lule river basin. Climatic Change, 81 (1), 293–307. doi:10.1007/s10584-006-9215-2
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377 (1), 80–91. doi:10.1016/j.jhydrol.2009.08.003
  • Hailegeorgis, T.T. and Alfredsen, K., 2017. Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. Journal of Hydrology: Regional Studies, 9, 104–126.
  • Hall, J., et al., 2014. Understanding flood regime changes in Europe: a state of the art assessment. Hydrology and Earth System Sciences, 18 (7), 2735–2772. doi:10.5194/hess-18-2735-2014
  • Hansen, N. and Ostermeier, A., 1997. Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: the CMA-ES. Eufit, 97, 650–654.
  • Hattermann, F.F., et al., 2018. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environmental Research Letters, 13 (1), 015006. doi:10.1088/1748-9326/aa9938
  • Henderson, and Sellers, A., 1993. An antipodean climate of uncertainty? Climatic Change, 25 (3–4), 203–224. doi:10.1007/BF01098373
  • Her, Y., et al., 2019. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Scientific Reports, 9 (1), 4974. doi:10.1038/s41598-019-41334-7
  • Hingray, B., et al., 2019. Uncertainty component estimates in transient climate projections. Climate Dynamics, 53 (5), 2501–2516. doi:10.1007/s00382-019-04635-1
  • Hirabayashi, Y., et al., 2008. Global projections of changing risks of floods and droughts in a changing climate. Hydrological Sciences Journal, 53 (4), 754–772. doi:10.1623/hysj.53.4.754
  • Ho, J.T., Thompson, J.R., and Brierley, C., 2016. Projections of hydrology in the Tocantins-Araguaia Basin, Brazil: uncertainty assessment using the CMIP5 ensemble. Hydrological Sciences Journal, 61 (3), 551–567. doi:10.1080/02626667.2015.1057513
  • Hu, L., et al., 2019. Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States. Journal of Flood Risk Management, 13 (1), e12580.
  • Huot, P.-L., et al., 2019. A hybrid optimization approach for efficient calibration of computationally intensive hydrological models. Hydrological Sciences Journal, 64 (10), 1204–1222. doi:10.1080/02626667.2019.1624922
  • IPCC, 2018. Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: World Meteorological Organization.
  • Kay, A.L., et al., 2009. Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 92 (1), 41–63. doi:10.1007/s10584-008-9471-4
  • Kling, H., Fuchs, M., and Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424–425, 264–277. doi:10.1016/j.jhydrol.2012.01.011
  • Knoben, W.J., Freer, J.E., and Woods, R.A., 2019. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. doi:10.5194/hess-23-4323-2019
  • Kottek, M., et al., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15 (3), 259–263. doi:10.1127/0941-2948/2006/0130
  • Krysanova, V., et al., 2018. How the performance of hydrological models relates to credibility of projections under climate change. Hydrological Sciences Journal, 63 (5), 696–720. doi:10.1080/02626667.2018.1446214
  • Kuczera, G., et al., 2010. There are no hydrological monsters, just models and observations with large uncertainties! Hydrological Sciences Journal, 55 (6), 980–991. doi:10.1080/02626667.2010.504677
  • Kundzewicz, Z.W., et al., 2017. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrological Sciences Journal, 62 (1), 1–14.
  • Kundzewicz, Z.W., et al., 2018. Uncertainty in climate change impacts on water resources. Environmental Science & Policy, 79, 1–8. doi:10.1016/j.envsci.2017.10.008
  • Lemaitre-Basset, T., et al., 2021. Climate change impact and uncertainty analysis on hydrological extremes in a French mediterranean catchment. Hydrological Sciences Journal, 66 (5), 888–903. doi:10.1080/02626667.2021.1895437
  • Livneh, B., et al., 2013. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. Journal of Climate, 26 (23), 9384–9392. doi:10.1175/JCLI-D-12-00508.1
  • Livneh, B., et al., 2015. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2 (1), 150042. doi:10.1038/sdata.2015.42
  • Lucas-Picher, P., et al., 2020. Application of a high-resolution distributed hydrological model on a U.S.-Canada Transboundary Basin: simulation of the multiyear mean annual hydrograph and 2011 flood of theRichelieu river basin. Journal of Advances in Modeling Earth Systems, 12 (4), e2019MS001709. doi:10.1029/2019MS001709
  • Maraun, D., 2016. Bias correcting climate change simulations - a critical review. Current Climate Change Reports, 2 (4), 211–220. doi:10.1007/s40641-016-0050-x
  • Maraun, D., et al., 2017. Towards process-informed bias correction of climate change simulations. Nature Climate Change, 7 (11), 764–773. doi:10.1038/nclimate3418
  • Mareuil, A., et al., 2007. Impacts of climate change on the frequency and severity of floods in the Châteauguay River basin, Canada. Canadian Journal of Civil Engineering, 34 (9), 1048–1060. doi:10.1139/l07-022
  • Martel, J.-L., et al., 2017. HMETS-A simple and efficient hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts. The International Journal of Engineering Education, 33, 1307–1316.
  • McGuinness, J. and Bordne, E., 1972. A comparison of lysimeter derived potential evapotranspiration with computed values. Tech. Bull., 1452. Washington, DC: Agricultural Research Service, United States Department of Agriculture.
  • Meresa, H.K. and Romanowicz, R.J., 2017. The critical role of uncertainty in projections of hydrological extremes. Hydrology and Earth System Sciences, 21 (8), 4245–4258. doi:10.5194/hess-21-4245-2017
  • Merz, B., et al., 2012. HESS opinions’ more efforts and scientific rigour are needed to attribute trends in flood time series’. Hydrology and Earth System Sciences, 16 (5), 1379–1387. doi:10.5194/hess-16-1379-2012
  • Merz, B. and Thieken, A.H., 2005. Separating natural and epistemic uncertainty in flood frequency analysis. Journal of Hydrology, 309 (1), 114–132. doi:10.1016/j.jhydrol.2004.11.015
  • Merz, B. and Thieken, A.H., 2009. Flood risk curves and uncertainty bounds. Natural Hazards, 51 (3), 437–458. doi:10.1007/s11069-009-9452-6
  • Meybeck, M., Kummu, M., and Dürr, H.H., 2013. Global hydrobelts and hydroregions: improved reporting scale for water-related issues? Hydrology and Earth System Sciences, 17 (3), 1093–1111. doi:10.5194/hess-17-1093-2013
  • Minville, M., et al., 2009. Adaptation to climate change in the management of a Canadian water-resources system exploited for hydropower. Water Resources Management, 23 (14), 2965–2986. doi:10.1007/s11269-009-9418-1
  • Mpelasoka, F.S. and Chiew, F.H., 2009. Influence of rainfall scenario construction methods on runoff projections. Journal of Hydrometeorology, 10 (5), 1168–1183. doi:10.1175/2009JHM1045.1
  • Oudin, L., et al., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model?: part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology, 303 (1), 290–306. doi:10.1016/j.jhydrol.2004.08.026
  • Pechlivanidis, I., et al., 2011. Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST Journal, 13 (3), 193–214.
  • Perrin, C., Michel, C., and Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279 (1–4), 275–289. doi:10.1016/S0022-1694(03)00225-7.
  • Poulin, A., et al., 2011. Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. Journal of Hydrology, 409 (3), 626–636. doi:10.1016/j.jhydrol.2011.08.057
  • Prudhomme, C. and Davies, H., 2009. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Climatic Change, 93 (1), 197–222. doi:10.1007/s10584-008-9461-6
  • Reszler, C., Switanek, M.B., and Truhetz, H., 2018. Convection-permitting regional climate simulations for representing floods in small and medium sized catchments in the Eastern Alps. Natural Hazards and Earth System Sciences, 18 (10), 2653–2674. doi:10.5194/nhess-18-2653-2018
  • Riboust, P. and Brissette, F., 2015. Climate change impacts and uncertainties on spring flooding of Lake Champlain and the Richelieu River. JAWRA Journal of the American Water Resources Association, 51 (3), 776–793. doi:10.1111/jawr.12271
  • Schmidli, J., Frei, C., and Vidale, P.L., 2006. Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology, 26 (5), 679–689. doi:10.1002/joc.1287
  • Schneider, S.H., 1983. CO2, climate and society: a brief overview. In: Social science research and climate change. Springer, Dordrecht: Springer, 9–15.
  • Seiller, G., Anctil, F., and Perrin, C., 2012. Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrology and Earth System Sciences, 16 (4), 1171–1189 . doi:10.5194/hess-16-1171-2012
  • Separovic, L., et al., 2013. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Climate Dynamics, 41 (11), 3167–3201. doi:10.1007/s00382-013-1737-5
  • Shen, M., et al., 2018. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. Journal of Hydrology, 556, 10–24. doi:10.1016/j.jhydrol.2017.11.004
  • Song, Y.H., Chung, E.-S., and Shahid, S., 2021. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. International Journal of Climatology, 41 (13), 5899–5919. doi:10.1002/joc.7159
  • Taye, M.T., et al., 2011. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrology and Earth System Sciences, 15 (1), 209–222. doi:10.5194/hess-15-209-2011
  • Taylor, K.E., Stouffer, R.J., and Meehl, G.A., 2011. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 (4), 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Teng, J., et al., 2012. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology, 13 (1), 122–139. doi:10.1175/JHM-D-11-058.1
  • Teutschbein, C., et al., 2015. Hydrological response to changing climate conditions: spatial streamflow variability in the boreal region. Water Resources Research, 51 (12), 9425–9446. doi:10.1002/2015WR017337
  • Themeßl, M.J., Gobiet, A., and Heinrich, G., 2012. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112 (2), 449–468. doi:10.1007/s10584-011-0224-4
  • Themeßl, M.J., Gobiet, A., and Leuprecht, A., 2011. Empirical‐statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology, 31 (10), 1530–1544. doi:10.1002/joc.2168
  • Thiboult, A., Anctil, F., and Boucher, M.A., 2016. Accounting for three sources of uncertainty in ensemble hydrological forecasting. Hydrology and Earth System Sciences, 20 (5), 1809–1825. doi:10.5194/hess-20-1809-2016
  • Thompson, J.R., et al., 2014. Climate change uncertainty in environmental flows for the mekong river. Hydrological Sciences Journal, 59 (3–4), 935–954. doi:10.1080/02626667.2013.842074
  • Troin, M., et al., 2018. Uncertainty of hydrological model components in climate change studies over two Nordic Quebec catchments. Journal of Hydrometeorology, 19 (1), 27–46. doi:10.1175/JHM-D-17-0002.1
  • Valéry, A., Andréassian, V., and Perrin, C., 2014. ‘As simple as possible but not simpler’: what is useful in a temperature-based snowaccounting routine? Part 2–sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology, 517, 1176–1187. doi:10.1016/j.jhydrol.2014.04.058
  • Velázquez, J.A., et al., 2013. An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrology and Earth System Sciences, 17 (2), 565–578. doi:10.5194/hess-17-565-2013
  • Vetter, T., et al., 2015. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth System Dynamics, 6 (1), 17–43. doi:10.5194/esd-6-17-2015
  • Vetter, T., et al., 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141 (3), 419–433. doi:10.1007/s10584-016-1794-y
  • Vidal, J.P., et al., 2016. Hierarchy of climate and hydrological uncertainties in transient low-flow projections. Hydrology and Earth System Sciences, 20 (9), 3651–3672. doi:10.5194/hess-20-3651-2016
  • Vormoor, K., et al., 2015. Climate change impacts on the seasonality and generation processes of floods–projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrology & Earth System Sciences, 19 (2), 913–931. doi:10.5194/hess-19-913-2015
  • Vormoor, K., et al., 2016. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. Journal of Hydrology, 538 (Supplement C), 33–48. doi:10.1016/j.jhydrol.2016.03.066
  • Wen, S., et al., 2020. Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China. Climatic Change, 163 (3), 1207–1226. doi:10.1007/s10584-020-02929-6
  • Wilby, R.L. and Dessai, S., 2010. Robust adaptation to climate change. Weather, 65 (7), 180–185. doi:10.1002/wea.543
  • Wilby, R.L. and Harris, I., 2006. A framework for assessing uncertainties in climate change impacts: low‐flow scenarios for the River Thames, UK. Water resources research, 42 (2).
  • Zhang, X., Xu, Y.-P., and Fu, G., 2014. Uncertainties in SWAT extreme flow simulation under climate change. Journal of Hydrology, 515, 205–222. doi:10.1016/j.jhydrol.2014.04.064
  • Zhao, C., et al., 2020. Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology, 584, 124316. doi:10.1016/j.jhydrol.2019.124316
  • Zhu, Q., et al., 2016. Investigating the uncertainty and transferability of parameters in SWAT model under climate change. Hydrological Sciences Journal, 61 (5), 914–930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.