158
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Hybrid model for daily runoff interval predictions based on Bayesian inference

, , &
Pages 62-75 | Received 24 Apr 2022, Accepted 07 Oct 2022, Published online: 02 Dec 2022

References

  • Alizadeh, M.J., et al., 2017. A new approach for simulating and forecasting the rainfall-runoff process within the next two months. Journal of Hydrology, 548, 588–597. doi:10.1016/j.jhydrol.2017.03.032
  • Bi, X., et al., 2020. Daily runoff forecasting based on data-augmented neural network model. Journal of Hydroinformatics, 22 (4), 900–915. doi:10.2166/hydro.2020.017
  • Boyd, G., et al., 2019. Influent forecasting for wastewater treatment plants in North America, sustainability, 11 (6), 1764. doi:10.3390/su11061764
  • Cho, K.H., et al., 2011. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Research, 45 (17), 5535–5544. doi:10.1016/j.watres.2011.08.010
  • Chong, A., et al., 2017. Bayesian calibration of building energy models with large datasets. Energy and Buildings, 154, 343–355. doi:10.1016/j.enbuild.2017.08.069
  • Cortes, C. and Vapnik, V., 1995. Support-Vector networks. Machine Learning, 20 (3), 273–297. doi:10.1007/BF00994018
  • Das, P. and Chanda, K., 2020. Bayesian network based modeling of regional rainfall from multiple local meteorological drivers. Journal of Hydrology, 591, 125563. doi:10.1016/j.jhydrol.2020.125563
  • Dash, R., Sa, P., and Majhi, B., 2012. Particle swarm optimization based support vector regression for blind image restoration. Journal of Computer Science and Technology, 27 (5), 989–995. doi:10.1007/s11390-012-1279-z
  • Duane, S., et al., 1987. Hybrid Monte Carlo. Physics Letters B, 195 (2), 216–222. doi:10.1016/0370-2693(87)91197-X
  • Goswami, M. and O’Connor, K.M., 2007. Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach. Journal of Hydrology, 334 (1–2), 125–140. doi:10.1016/j.jhydrol.2006.10.002
  • Greenhill, S., et al., 2020. Bayesian optimisation for adaptive experimental design: a review. IEEE Access, 99, 1.
  • Hakan, T. and Booij, M.J., 2018. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, S0022169418305092.
  • Hoffman, M.D. and Gelman, A., 2011. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15 (1).
  • Hsu, K.L., Gupta, H.V., and , and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955
  • Hua, X.G., et al., 2007. Modeling of temperature–frequency correlation using combined principal component analysis and support vector regression technique. Journal of Computing in Civil Engineering, 21 (2), 122–135. doi:10.1061/(ASCE)0887-3801(2007)21:2(122)
  • Huiming, Z., Yuqi, H., and Jincheng, Z., 2005. Bayesian AR(p) prediction model based on normal-Gamma conjugate prior distribution. Statistics and Decision, 2, 8–9.
  • Jain, A. and Indurthy, S., 2003. Comparative analysis of event-based rainfall-runoff modeling techniques—deterministic, statistical, and artificial neural networks. Journal of Hydrologic Engineering, 8 (2), 93–98. doi:10.1061/(ASCE)1084-0699(2003)8:2(93)
  • Kalteh, A.M., 2013. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54 (apr.), 1–8. doi:10.1016/j.cageo.2012.11.015
  • Kwok, T.Y., 2000. The evidence framework applied to support vector machines. IEEE Transactions on Neural Networks, 11 (5), 1162–1173. doi:10.1109/72.870047
  • Laloy, E., Fasbender, D., and Bielders, C.L., 2010. Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach. Journal of Hydrology, 380 (1–2), 82–93. doi:10.1016/j.jhydrol.2009.10.025
  • Legates, D.R. and Mccabe, G.J., 1999. Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018
  • Li, D., et al., 2021. Bayesian LSTM with stochastic variational inference for estimating model uncertainty in process-based hydrological models. Water Resources Research, 57 (9), e2021WR029772. doi:10.1029/2021WR029772
  • Liang, Z., et al., 2018. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework. Theoretical and Applied Climatology, 133 (1–2), 137–149. doi:10.1007/s00704-017-2186-6
  • Liu, Y., et al. 2016. A Bayesian analysis of generalized pareto distribution of runoff minima. Hydrological Processes, 30 (3), 424–432. doi:10.1002/hyp.10606
  • Liu, N., et al., 2020. Variational inference in Bayesian computation. International Core Journal of Engineering, 6 (12), 326–332.
  • Liu, Y. and Gupta, H.V., 2007. Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resources Research, 43 (7), W07401. doi:10.1029/2006WR005756
  • Lmlh, A. and Zlh, B., 2008. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research, 42 (10–11), 2563–2573. doi:10.1016/j.watres.2008.01.002
  • Meshram, S.G., et al., 2020. Application of artificial neural networks, support vector machine and multiple model-ann to sediment yield prediction. Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 34 (15), 4561–4575. doi:10.1007/s11269-020-02672-8
  • Mi, A., et al., 2018. A simplified approach to produce probabilistic hydrological model predictions. Environmental Modelling & Software, 109, 306–314. doi:10.1016/j.envsoft.2018.07.001
  • Miao, F., et al., 2018. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides, 15, 475–488. doi:10.1007/s10346-017-0883-y
  • Niu, D.X., Shi, H.F., and Wu, D.D., 2012. Short-term load forecasting using Bayesian neural networks learned by Hybrid Monte Carlo algorithm. Applied Soft Computing, 12 (6), 1822–1827. doi:10.1016/j.asoc.2011.07.001
  • Nourali, M., et al., 2016. Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model. Journal of Hydrology, 540, 549–564. doi:10.1016/j.jhydrol.2016.06.022
  • Papacharalampous, G.A., et al., 2020. Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: a large-sample experiment at monthly timescale. Advances in Water Resources, 103470.
  • Parent, K.E., 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211 (1), 69–85. doi:10.1016/S0022-1694(98)00198-X
  • Povinelli, R.J., 1999. Time series data mining: identifying temporal patterns for characterization and prediction of time series events [M]. Marquette University.
  • Schoppa, L., Disse, M., and Bachmair, S., 2020. Evaluating the performance of random forest for large-scale flood discharge simulation. Journal of Hydrology, 590, 125531. doi:10.1016/j.jhydrol.2020.125531
  • Song, P., et al., 2020. Annual runoff forecasting based on multi-model information fusion and residual error correction in the Ganjiang River Basin. Water, 12 (8), 2086. doi:10.3390/w12082086
  • Sun, Y., et al., 2021. An improved grid search algorithm to optimize SVR for prediction. Soft Computing, 25 (10), 5633–5644. doi:10.1007/s00500-020-05560-w
  • Torres, M.E., et al., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4144–4147. doi:10.1109/ICASSP.2011.5947265
  • Valipour, M., 2015. Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22 (3), 592–598. doi:10.1002/met.1491
  • Wang, H., et al., 2017. Bayesian forecasting and uncertainty quantifying of stream flows using metropolis–hastings Markov Chain Monte Carlo algorithm. Journal of Hydrology, 549, 476–483. doi:10.1016/j.jhydrol.2017.03.073
  • Wang, Z., Qiu, J., and , and Li, F., 2018. Hybrid models combining emd/eemd and arima for long-term streamflow forecasting. Water, 10 (7), 853. doi:10.3390/w10070853
  • Wang, W., Zhang, Y., and Tang, Q., 2020. Impact assessment of climate change and human activities on streamflow signatures in the Yellow River Basin using the Budyko hypothesis and derived differential equation. Journal of Hydrology, 591 (7401), 125460. doi:10.1016/j.jhydrol.2020.125460
  • Welling, M. and Teh, Y.W., 2011. Bayesian learning via stochastic gradient langevin dynamics. Proceedings of the 28th International Conference on International Conference on Machine Learning. Omnipress, Bellevue, Washington, USA, pp. 681–688.
  • Wen, X., et al., 2019. Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems. Journal of Hydrology, 570, 167–184. doi:10.1016/j.jhydrol.2018.12.060
  • Wunsch, A., Liesch, T., and Broda, S., 2021. Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX). Hydrology and Earth System Sciences 25 (3), 1671–1687. doi:10.5194/hess-25-1671-2021
  • Xiong, L.H., et al., 2009. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. International Association of Scientific Hydrology Bulletin, 54 (5), 852–871. doi:10.1623/hysj.54.5.852
  • Zhang, X., et al., 2009. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resources Research, 45 (2). doi:10.1029/2008WR007030
  • Zhang, T., et al., 2022. Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China. Science of the Total Environment, 819, 153030. doi:10.1016/j.scitotenv.2022.153030
  • Zhao, X.H. and Chen, X., 2015. Auto regressive and ensemble empirical mode decomposition hybrid model for annual runoff forecasting. Water Resources Management, 29 (8), 2913–2926. doi:10.1007/s11269-015-0977-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.