218
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Unveiling the climatic origin of streamflow persistence through multifractal analysis of hydro-meteorological datasets of India

, , , &
Pages 290-306 | Received 27 Jan 2022, Accepted 18 Nov 2022, Published online: 16 Jan 2023

References

  • Adarsh, S., et al., 2019. Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. International Journal of Climatolology, 39 (11), 4234–4255. doi:10.1002/joc.6070
  • Adarsh, S., et al., 2020a. Multifractal description of streamflow and suspended sediment concentration data from Indian river basins. Acta Geophysica, 68 (2), 519–535. doi:10.1007/s11600-020-00407-2
  • Adarsh, S., et al., 2020b. Multifractal description of daily rainfall fields over India. Journal of Hydrology, 586, 124913. doi:10.1016/j.jhydrol.2020.124913
  • Adarsh, S., et al., 2022. On the detection and attribution of streamflow persistence of rivers in Peninsular India. Acta Geophysica, 70 (3), 1373–1383. doi:10.1007/s11600-022-00800-z
  • Adarsh, S., Dharan, S.D., and Anuja, P.K., 2018. Analyzing the hydrologic variability of Kallada River, India using continuous wavelet transform and fractal theory. Water Conservation Science and Engineering, 3 (4), 305–319. doi:10.1007/s41101-018-0060-8
  • Bassingthwaighte, J.B. and Beyer, R.P., 1991. Fractal correlation in heterogeneous systems. Physica D, 53 (1991), 71–84. doi:10.1016/0167-2789(91)90165-6
  • Biswal, B., 2016. Dynamic hydrologic modelling using the zero-parameter Budyko model with instantaneous dryness index. Geophysical Research Letters, 43 (18), 9696–9703. doi:10.1002/2016GL070173
  • Brito, A.A., et al., 2018. Cross-correlation in a turbulent flow: analysis of the velocity field using the ρ DCCA coefficient. Europhysics Letters, 123 (2), 20011. doi:10.1209/0295-5075/123/20011
  • Budyko, M., 1974. Climate and life. New York, NY: Academic Press.
  • Burgueño, A., et al., 2014. Daily extreme temperature multifractals in Catalonia (NE Spain). Physics Letters A, 378 (11–12), 874–885. doi:10.1016/j.physleta.2014.01.033
  • Cadenas, E., et al., 2019. Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Science and Engineering, 7 (2), 361–378. doi:10.1002/ese3.277
  • Chakraborty, S. and Chattopadhyay, S., 2021. Exploring the Indian summer monsoon rainfall through multifractal detrended fluctuation analysis and the principle of entropy maximization. Earth Science Informatics, 14 (3), 1571–1577. doi:10.1007/s12145-021-00641-2
  • Chandrasekaran, S., et al., 2019. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series. Meteorological Applications, 16 (3), 511–519. doi:10.1002/met.1784
  • Chen, X., Wu, Z., and Huang, N.E., 2010. The time-dependent intrinsic correlation based on the empirical mode decomposition. Advances in Adaptive Data Analysis, 2 (2), 233–265. doi:10.1142/S1793536910000471
  • Dahlstedt, K. and Jensen, H.J., 2005. Fluctuation spectrum and size scaling of river flow and level. Physica A: Statistical Mechanics and Its Applications, 348, 596–610. doi:10.1016/j.physa.2004.09.039
  • Deidda, R., Benzi, R., and Siccardi, F., 1999. Multifractal modelling of anomalous scaling laws in rainfall. Water Resources Research, 35 (6), 1853–1867. doi:10.1029/1999WR900036
  • Dey, P. and Mujumdar, P.P., 2018. Multiscale evolution of persistence of rainfall and streamflow. Advances in Water Resources, 121, 285–303. doi:10.1016/j.advwatres.2018.08.018
  • Dey, P. and Mujumdar, P., 2022. On the statistical complexity of streamflow. Hydrological Sciences Journal, 67 (1), 40–53. doi:10.1080/02626667.2021.2000991
  • Dimitriadis, P., et al., 2021. A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology, 8 (2), 59. doi:10.3390/hydrology8020059
  • Drożdż, S., et al., 2019. Signatures of the crypto-currency market decoupling from the Forex. Future Internet, 11 (7), 154. doi:10.3390/fi11070154
  • García-Marín, A.P., et al., 2015. Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 529, 106–119.
  • Gentine, P., et al., 2012. Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophysical Research Letters, 39 (19). doi:10.1029/2012GL053492
  • Ghosh, S. and Mujumdar, P.P., 2007. Nonparametric methods for modelling GCM and scenario uncertainty in drought assessment. Water Resources Research, 43 (7). doi:10.1029/2006WR005351
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. doi:10.13031/2013.26773
  • Hirpa, F.A., Gebremichael, M., and Over, T.M., 2010. River flow fluctuation analysis: effect of watershed area. Water Resources Research, 46 (12). doi:10.1029/2009WR009000
  • Huang, Y.-X., et al., 2009. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Journal of Hydrology, 373 (1–2), 103–111. doi:10.1016/j.jhydrol.2009.04.015
  • Huang, Y.-X., 2009. Arbitrary order hilbert spectral analysis definition and application to fully developed turbulence and environmental time-series. Thesis (PhD). University of Lille France.
  • Hurst, H.E., 1951. The long-term storage capacity of reservoir. Transactions of the American Society of Civil Engineers 116, Paper 2447, Published in 1950 as Proceedings-Separate No. 11.
  • Hurst, H.E., Black, R.P., and Simaika, Y.M., 1965. Long-term storage: an experimental study. London: Constable.
  • Ihlen, E.A.F., 2012. Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology, 3, 3. doi:10.3389/fphys.2012.00141
  • Jiang, Z.Q., and Zhou, W.X., 2011. Multifractal detrending moving-average cross-correlation analysis. Physical Review E, 84, 016106. doi:10.1103/PhysRevE.84.016106.
  • Jovanovic, T., et al., 2016. Effect of urbanization on the long-term persistence of streamflow records. Physica A: Statistical Mechanics and Its Applications, 447, 208–221. doi:10.1016/j.physa.2015.12.024
  • Kantelhardt, J.W., et al., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and Its Applications, 316 (1–4), 87–114. doi:10.1016/S0378-4371(02)01383-3
  • Kantelhardt, J.W., et al., 2006. Long-term persistence and multifractality of precipitation and river runoff records. Journal of Geophysical Research, 111 (D1), D01106. doi:10.1029/2005JD005881
  • Koscielny-Bunde, E., et al., 2006. Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. Journal of Hydrology, 322 (1–4), 120–137. doi:10.1016/j.jhydrol.2005.03.004
  • Koutsoyiannis, D., 2020. Revisiting the global hydrological cycle: is it intensifying? Hydrology and Earth System Sciences, 24 (8), 3899–3932. doi:10.5194/hess-24-3899-2020
  • Kwapień, J., Oświęcimka, P., and Drożdż, S., 2015. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Physical Review E, 92 (5), 052815. doi:10.1103/PhysRevE.92.052815
  • Labat, D., et al., 2011. Scaling behaviour of the fluctuations in streamflow at the outlet of karstic watersheds, France. Journal of Hydrology, 410 (3–4), 162–168. doi:10.1016/j.jhydrol.2011.09.010
  • Ledvinka, O. and Recknagel, T., 2020. Long-term persistence in discharge time series of mountainous catchments in the Elbe River basin. Proceedings of International Association of Hydrological Sciences, 383, 135–140. doi:10.5194/piahs-383-135-2020
  • Li, E., et al., 2015. Multifractal detrended fluctuation analysis of streamflow in the Yellow River basin, China. Water, 7 (12), 1670–1686. doi:10.3390/w7041670
  • Lian, J., Dang, L., and Ma, C., 2016. Hydrologic modification and vanishing self-organized criticality of river flows caused by dam operations. Journal of Hydrologic Engineering, 21 (12). doi:10.1061/(ASCE)HE.1943-5584.0001458
  • Livina, V., et al., 2007. Temporal scaling comparison of real hydrological data and model runoff records. Journal of Hydrology, 336 (1–2), 186–198. doi:10.1016/j.jhydrol.2007.01.014
  • Mandelbrot, B., 1982. The fractal geometry of nature. New York: WH Freeman Publishers.
  • Markonis, Y., et al., 2018. Global estimation of long-term persistence in annual river runoff. Advances in Water Resources, 113, 1–12. doi:10.1016/j.advwatres.2018.01.003
  • Markonis, Y. and Koutsoyiannis, D., 2016. Scale-dependence of persistence in precipitation records. Nature Climate Change, 6 (4), 399–401. doi:10.1038/nclimate2894
  • Mudelsee, M., 2007. Long memory of rivers from spatial aggregation. Water Resources Research, 43 (1). doi:10.1029/2006WR005721
  • Muzy, J.F., Bacry, E., and Arneodo, A., 1993. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Physical Review E, 47, 875–884.
  • Nayak, A.K., Biswal, B., and Sudheer, K.P., 2021a. A novel framework to determine the usefulness of satellite-based soil moisture data in streamflow prediction using dynamic Budyko model. Journal of Hydrology, 595, 125849. doi:10.1016/j.jhydrol.2020.125849
  • Nayak, A.K., Biswal, B., and Sudheer, K.P., 2021b. Role of hydrological model structure in the assimilation of soil moisture for streamflow prediction. Journal of Hydrology, 598, 126465. doi:10.1016/j.jhydrol.2021.126465
  • Onyutha, C., et al., 2019. How well do climate models reproduce variability in observed rainfall? A case study of the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations. Stochastic Environmental Research and Risk Assessment, 33 (3), 687–707. doi:10.1007/s00477-018-1611-4
  • Onyutha, C., 2021a. Graphical-statistical method to explore variability of hydrological time series. Hydrology Research, 52 (1), 266–283. doi:10.2166/nh.2020.111
  • Onyutha, C., 2021b. Trends and variability of temperature and evaporation over the African continent: relationships with precipitation. Atmósfera, 34 (3), 267–287.
  • Oświecimka, P., et al., 2014. Detrended cross-correlation analysis consistently extended to multifractality. Physical Review E, 89 (2), 23305. doi:10.1103/PhysRevE.89.023305
  • Pai, D.S., et al., 2015. Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Climate Dynamics, 45 (3–4), 755–776. doi:10.1007/s00382-014-2307-1
  • Pal, S., et al., 2020. Hurst exponent approach through rescaled range analysis to study the time series of summer monsoon rainfall over northeast India. Theoretical and Applied Climatology, 142 (1–2), 581–587. doi:10.1007/s00704-020-03338-6
  • Pandey, G., Lovejoy, S., and Schertzer, D., 1998. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. Journal of Hydrology, 208 (1–2), 62–81. doi:10.1016/S0022-1694(98)00148-6
  • Papacharalampous, G. and Tyralis, H., 2020. Hydrological time series forecasting using simple combinations: big data testing and investigations on one-year ahead river flow predictability. Journal of Hydrology, 590, 125205. doi:10.1016/j.jhydrol.2020.125205
  • Pathirana, A., Herath, S., and Yamada, T., 2003. Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrology and Earth System Sciences, 7 (5), 668–679. doi:10.5194/hess-7-668-2003
  • Patnaik, S., Sharma, V.C., and Biswal, B., 2019. Evaluation of an instantaneous dryness index-based calibration-free continuous hydrological model in India. Hydrology Research, 50 (3), 915–924. doi:10.2166/nh.2019.081
  • Peng, C.-K., et al., 1994. Mosaic organization of DNA nucleotides. Physical Review E, 49 (2), 1685–1689. doi:10.1103/PhysRevE.49.1685
  • Perdios, A. and Langousis, A., 2020. Revisiting the statistical scaling of annual discharge maxima at daily resolution with respect to the basin size in the light of rainfall climatology. Water, 12 (2), 610. doi:10.3390/w12020610.
  • Piao, L. and Fu, Z., 2016. Quantifying distinct associations on different temporal scales: comparison of DCCA and Pearson methods. Scientific Reports, 6 (1), 36759. doi:10.1038/srep36759
  • Podobnik, B. and Stanley, H.E., 2008. Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical Review Letters, 100 (8), 84102. doi:10.1103/PhysRevLett.100.084102
  • Rego, C.R.C., Frota, H.O., and Gusmão, M.S., 2013. Multifractality of Brazilian rivers. Journal of Hydrology, 495, 208–215. doi:10.1016/j.jhydrol.2013.04.046
  • Rickards, N., et al., 2020. Understanding future water challenges in a highly regulated Indian river basin—modelling the impact of climate change on the hydrology of the Upper Narmada. Water, 12 (6), 1762. doi:10.3390/w12061762
  • Sagarika, S., Kalra, A., and Ahmad, S., 2014. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. Journal of Hydrology, 517, 36–53. doi:10.1016/j.jhydrol.2014.05.002
  • Sankaran, A., et al., 2021. Spatiotemporal variability of multifractal properties of fine resolution daily gridded rainfall fields over India. Natural Hazards, 106 (3), 1951–1979. doi:10.1007/s11069-021-04523-0
  • Schertzer, D., et al., 2010. No monsters, no miracles: in nonlinear sciences hydrology is not an outlier! Hydrological Sciences Journal, 55 (6), 965–979. doi:10.1080/02626667.2010.505173
  • Schertzer, D., Hubert, P., and Lovejoy, S., 2007. Scaling, multifractals and predictions in ungauged basins: where we have been, where we are going? Predictions in ungauged basins: PUB kick-off. Proceedings of the PUB Kick-Off Meeting Held in Brasilia, 20–22 November 2002, 309, 92–101.
  • Schertzer, D. and Lovejoy, S., 1987. Physical modelling and analysis of rain and clouds by aniso–tropic scaling multiplicative processes. Journal of Geophysical Research, 92, 9693–9714. doi:10.1029/JD092iD08p09693
  • Srivastava, A.K., Rajeevan, M., and Kshirsagar, S.R., 2009. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters, 10 (4), 249–254 n/a–n/a. doi:10.1002/asl.232
  • Sudheer, K.P., Srinivasan, K., and Narasimhan, B., 2019. Morphological study of Krishna and Tungabhadra basins using remote sensing technique. IIT Madras, Report of the project funded by Central Water Commission Ministry of Water Resources Government of India.
  • Szolgayova, E., et al., 2014. Factors influencing long range dependence in streamflow of European rivers. Hydrological Processes, 28 (4), 1573–1586. doi:10.1002/hyp.9694
  • Tan, X. and Gan, T.Y., 2017. Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37, 1221–1236. doi:10.1002/joc.5078
  • Tatli, H., 2015. Detecting persistence of meteorological drought via the Hurst exponent. Meteorological Applications, 22 (4), 763–769. doi:10.1002/met.1519
  • Tchiguirinskai, I., et al., 2007. Potential of multifractal modelling of ungauged basins predictions in ungauged basins: PUB kick-off. Proceedings of the PUB Kick-Off Meeting Held in Brasilia, 20–22 November 2002, 309, 98–308.
  • Tessier, Y., et al., 1996. Multifractal analysis and modelling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research, 101, 26427–26440. doi:10.1029/96JD01799
  • Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin American Meteorological Society, 79, 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  • Vassoler, R.T. and Zebende, G.F., 2012. DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and Its Applications, 391 (7), 2438–2443. doi:10.1016/j.physa.2011.12.015
  • Villarini, G. and Wasko, C., 2021. Humans, climate and streamflow. Nature Climate Change, 11 (2021), 725–726. doi:10.1038/s41558-021-01137-z
  • Wang, X., et al., 2016. Influence of sub-daily variation on multi-fractal detrended fluctuation analysis of wind speed time series. PLoS ONE, 11 (1), e0146284. doi:10.1371/journal.pone.0146284
  • Watorek, M., et al., 2019. Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Economics, 81, 874–885. doi:10.1016/j.eneco.2019.05.015
  • Zebende, G.F., 2011. DCCA cross-correlation coefficient: quantifying level of cross-correlation. Physica A: Statistical Mechanics and Applications, 390, 614–618. doi:10.1016/j.physa.2010.10.022
  • Zhang, Q., et al., 2008. Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China. Hydrological Processes, 22 (26), 4997–5003. doi:10.1002/hyp.7119
  • Zhang, Q., et al., 2009. Multifractal analysis of streamflow records of the East River basin (Pearl River), China. Physica A: Statistical Mechanics and Its Applications, 388 (6), 927–934. doi:10.1016/j.physa.2008.11.025
  • Zhang, X., et al., 2019. A modified multifractal detrended fluctuation analysis (MFDFA) approach for multifractal analysis of precipitation in dongting lake basin, China. Water, 11 (5), 891. doi:10.3390/w11050891
  • Zhou, W.-X., 2008. Multifractal detrended cross-correlation analysis for two non-stationary signals. Physical Review E, 77 (6), 066211. doi:10.1103/PhysRevE.77.066211
  • Zhou, Y., Zhang, Q., and Singh, V.P., 2014. Fractal-based evaluation of the effect of water reservoirs on hydrological processes: the dams in the Yangtze River as a case study. Stochastic Environmental Research and Risk Assessment, 28 (2), 263–279. doi:10.1007/s00477-013-0747-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.