5,497
Views
3
CrossRef citations to date
0
Altmetric
Review

Water resources of Afghanistan and related hazards under rapid climate warming: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 507-525 | Received 23 Dec 2021, Accepted 04 Nov 2022, Published online: 06 Feb 2023

References

  • Aawar, T. and Khare, D., 2020. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: a case study of Afghanistan. Modeling Earth Systems and Environment, 6 (3), 1427–1437. doi:10.1007/s40808-020-00759-0.
  • Aawar, T., Khare, D., and Singh, L., 2019. Identification of the trend in precipitation and temperature over the Kabul river sub-basin: a case study of Afghanistan. Modeling Earth Systems and Environment, 5 (4), 1377–1394. doi:10.1007/s40808-019-00597-9.
  • Aich, V., et al., 2017. Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)—South Asia simulations. Climate, 5 (2), 38. doi:10.3390/cli5020038.
  • Akhtar, F., et al., 2021. Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment. Sustainability, 13 (24), 14025. doi:10.3390/su132414025.
  • Akhundzadah, N.A., Soltani, S., and Aich, V., 2020. Impacts of climate change on the water resources of the Kunduz River Basin, Afghanistan. Climate, 8 (10), 102. doi:10.3390/cli8100102.
  • Aliyar, Q., et al., 2022. Drought perception and field-level adaptation strategies of farming households in drought-prone areas of Afghanistan. International Journal of Disaster Risk Reduction, 72, 102862. doi:10.1016/j.ijdrr.2022.102862.
  • Aliyar, Q., Dhungana, S., and Shrestha, S., 2021. Spatio-temporal trend mapping of precipitation and its extremes across Afghanistan (1951–2010). Theoretical and Applied Climatology, 1–22.
  • Atef, S.S., et al., 2019. Water conflict management and cooperation between Afghanistan and Pakistan. Journal of Hydrology, 570, 875–892. doi:10.1016/j.jhydrol.2018.12.075.
  • Ayoubi, T. and Kang, D., 2016. Assessing impacts of landuse/landcover change on surface runoff for panjshir watershed: a watershed modelling approach. International Journal of Engineering and Technical Research (IJETR), 6 (1).
  • Azizi, F., 11 Dec 2018. Cryosphere status and glacier lake outburst flood risk in the mountainous basins of Afghanistan. Kabul, Afghanistan: International Mountain Day, Ministry of Agriculture, Irrigation, and Livestock.
  • Azizi, A.H. and Asaoka, Y., 2020. Assessment of the impact of climate change on snow distribution and river flows in a snow-dominated mountainous watershed in the western hindukush–himalaya, Afghanistan. Hydrology, 7 (4), 74. doi:10.3390/hydrology7040074.
  • Bajracharya, S.R., Mool, P.K., and Shrestha, B.R., 2007. Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), p. xii + 119.
  • Baraer, M., et al., 2012. Glacier recession and water resources in Peru’s Cordillera Blanca. Journal of Glaciology, 58 (207), 134–150. doi:10.3189/2012JoG11J186.
  • Berghuijs, W.R., Woods, R.A., and Hrachowitz, M., 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change, 4 (7), 583–586. doi:10.1038/nclimate2246.
  • Bookhagen, B., 2012. Himalayan groundwater. Nature Geoscience, 5 (2), 97–98. doi:10.1038/ngeo1366.
  • Brati, M.Q., Ishihara, M.I., and Higashi, O., 2019. Groundwater level reduction and pollution in relation to household water management in Kabul, Afghanistan. Sustainable Water Resources Management, 5 (3), 1315–1325. doi:10.1007/s40899-019-00312-7.
  • Breckle, S.W. and Rafiqpoor, M.D., 2010. Field guide Afghanistan: flora and vegetation. Bonn: Scientia Bonnensis.
  • Bromand, M.T., 2015. Impact Assessment of Climate Change on Water Resources in the Kabul River Basin, Afghanistan. Thesis (MSc). Kyoto, Japan: Ritsumeikan University. Available from: https://www.ckrb.org/articles [ Accessed 18 Oct 2022].
  • Bromand, M.T., 2017. Impact assessment of climate change on surface water availability in the five River Basins, Afghanistan. In: 4th National Water Conference, Ministry of Energy and Water, 5–7 March 2017 Kabul, Afghanistan.
  • Broshears, R.E., et al., 2005. Inventory of ground-water resources in the Kabul Basin, Afghanistan. Virginia, USA: US Geological Survey. (No. 2005-5090).
  • Burn, C.R., 1994. Permafrost, tectonics, and past and future regional climate change, Yukon and adjacent Northwest Territories. Canadian Journal of Earth Sciences, 31 (1), 182–191. doi:10.1139/e94-015.
  • Casale, F. et al., 2020. Hydropower potential in the Kabul River under climate change scenarios in the XXI century. Theoretical and Applied Climatology, 139 (3), 1415–1434. doi:10.1007/s00704-019-03052-y.
  • Chen, Y., et al., 2017. Hydrological modeling in glacierised catchments of Central Asia–status and challenges. Hydrology and Earth System Sciences, 21 (2), 669–684. doi:10.5194/hess-21-669-2017.
  • Collins, D.N., 2008. Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum. Annals of Glaciology, 48, 119–124. doi:10.3189/172756408784700761
  • Favre, R. and Kamal, G.M., 2004. Watershed atlas of Afghanistan, working document for planners, parts I and II. 1st ed. Kabul, Afghanistan: Government of Afghanistan, Ministry of Irrigation.
  • Gellasch, C.A., 2014. Hydrogeology of Afghanistan and its impact on military operations. Military Geosciences in the 21st century. In: S. Russell Harmon, E. Sophie Baker, and V. Eric Mcdonald, eds. Geological society of America reviews in Engineering Geology, Vol. 22. Colorado, USA: Geological Society of America, 69–81.
  • Gesim, N.A. and Okazaki, T., 2018. Assessment of groundwater vulnerability to pollution using DRASTIC model and fuzzy logic in Herat city, Afghanistan. International Journal of Advanced Computer Science and Applications, 9 (10). doi:10.14569/IJACSA.2018.091021.
  • Ghulami, M., 2017. Assessment of climate change impacts on water resources and agriculture in data-scarce Kabul basin, Afghanistan. Thesis (Doctoral dissertation, Université Côte d’Azur; Asian institute of technology). Available from: https://tel.archives-ouvertes.fr/tel-01737052 [ Accessed 18 Oct 2022].
  • Ghulami, M. et al., 2022. Performance evaluation of CORDEX South Asia models for projections of precipitation over the Kabul basin, Afghanistan. LHB, 108 (1), 2095936. doi:10.1080/27678490.2022.2095936.
  • Gilbert, O., et al., 1969. Regime of an Afghan glacier. Journal of Glaciology, 8 (52), 51–65. doi:10.1017/S0022143000020761.
  • Glantz, M.H., 2005. Water, climate, and development issues in the Amu Darya Basin. Mitigation and Adaptation Strategies for Global Change, 10 (1), 23–50. doi:10.1007/s11027-005-7829-8.
  • Glas, R., et al., 2018. A review of the current state of knowledge of proglacial hydrogeology in the Cordillera Blanca, Peru. Wiley Interdisciplinary Reviews: Water, 5 (5), 1299.
  • Goes, B.J.M., et al., 2016. Integrated water resources management in an insecure river basin: a case study of Helmand River Basin, Afghanistan. International Journal of Water Resources Development, 32 (1), 3–25. doi:10.1080/07900627.2015.1012661.
  • Gopalakrishnan, R., 1982. The geography and politics of Afghanistan. New Delhi, India: Concept Publishing Company.
  • Hagg, W., et al., 2007. Modelling of hydrological response to climate change in glacierised Central Asian catchments. Journal of Hydrology, 332 (1–2), 40–53. doi:10.1016/j.jhydrol.2006.06.021.
  • Haritashya, U.K., et al., 2009. Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan. Climatic Change, 94 (1), 5–18. doi:10.1007/s10584-009-9555-9.
  • Hayat, E. and Baba, A., 2017. Quality of groundwater resources in Afghanistan. Environmental Monitoring and Assessment, 189 (7), 1–16. doi:10.1007/s10661-017-6032-1.
  • Horton, P., et al., 2006. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrological Processes: An International Journal, 20 (10), 2091–2109. doi:10.1002/hyp.6197.
  • Houben, G., et al., 2009a. Hydrogeology of the Kabul Basin (Afghanistan), part I: aquifers and hydrology. Hydrogeology Journal, 17 (3), 665–677. doi:10.1007/s10040-008-0377-z.
  • Houben, G., et al., 2009b. Hydrogeology of the Kabul Basin (Afghanistan), part II: groundwater geochemistry. Hydrogeology Journal, 17 (4), 935–948. doi:10.1007/s10040-008-0375-1.
  • Hrachowitz, M., et al., 2013. A decade of Predictions in Ungauged Basins (PUB) - a review. Hydrological Sciences Journal, 58 (6), 1198–1255. doi:10.1080/02626667.2013.803183.
  • Humlum, J., Køie, M., and Ferdinand, K., 1959. La géographie de l’Afghanistan: étude d’un pays aride. Revue de Geographie Alpine, 24, 431–432.
  • Huning, L.S. and AghaKouchak, A., 2020. Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences, 117 (33), 19753–19759. doi:10.1073/pnas.1915921117.
  • Hussain, I., et al., 2008. Revitalizing a traditional dryland water supply system: the karezes in Afghanistan, Iran, Pakistan and the Kingdom of Saudi Arabia. Water International, 33 (3), 333–349. doi:10.1080/02508060802255890.
  • Hussainzada, W. and Lee, H.S., 2021. Hydrological modelling for water resource management in a semi-arid mountainous region using the soil and water assessment tool: a case study in northern Afghanistan. Hydrology, 8 (1), 16. doi:10.3390/hydrology8010016.
  • Huss, M. and Hock, R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8 (2), 135–140. doi:10.1038/s41558-017-0049-x.
  • Immerzeel, W.W., Van Beek, L.P., and Bierkens, M.F., 2010. Climate change will affect the Asian water towers. Science, 328 (5984), 1382–1385. doi:10.1126/science.1183188.
  • Iqbal, M.S., et al., 2018. Impact of climate change on flood frequency and intensity in the Kabul River Basin. Geosciences, 8 (4), 114. doi:10.3390/geosciences8040114.
  • Jami, A., et al., 2019. Evaluation of the effects of climate change on field-water demands using limited ground information: a case study in Balkh province, Afghanistan. Irrigation Science, 37 (5), 583–595. doi:10.1007/s00271-019-00638-2.
  • Jawadi, H.A., Sagin, J., and Snow, D.D., 2020. A detailed assessment of groundwater quality in the Kabul Basin, Afghanistan, and suitability for future development. Water, 12 (10), 2890. doi:10.3390/w12102890.
  • Joya, E., et al., 2021. Current glacier status and ELA changes since the Late Pleistocene in The Hindu Kush Mountains of Afghanistan. Journal of Asian Earth Sciences, 219, 104897. doi:10.1016/j.jseaes.2021.104897.
  • Karim, A.Q., 2018. Groundwater quality and concerns of Kabul river Basin, Afghanistan. In Mukherjee A, editor. Groundwater of South Asia. Singapore: Springer, 197–204.
  • Kaser, G., Großhauser, M., and Marzeion, B., 2010. Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, 107 (47), 20223–20227. doi:10.1073/pnas.1008162107.
  • Laghari, A.N., Vanham, D., and Rauch, W., 2012. The Indus basin in the framework of current and future water resources management. Hydrology and Earth System Sciences, 16 (4), 1063–1083. doi:10.5194/hess-16-1063-2012.
  • Lashkaripour, G.R. and Hussaini, S.A., 2008. Water resource management in Kabul river basin, eastern Afghanistan. The Environmentalist, 28 (3), 253–260. doi:10.1007/s10669-007-9136-2.
  • Lebedeva, I.M., 1997. Change of the glacial runoff of The Hindu Kush rivers under the global climate warming. MGI (Data of Glaciological Studies), 83, 65–72.
  • Lebedeva, I.M. and Larin, A., 1991. Lednikovaya sistema Afghanistana: morfologiya, klimat, massoobmen, stok (Glacier system of Afghanistan: morphology, climate, mass-exchange, runoff). Data of Glaciological Studies, 72, 76–87.
  • Lei, Y. and Yang, K., 2017. The cause of rapid lake expansion in the Tibetan Plateau: climate wetting or warming? Wiley Interdisciplinary Reviews: Water, 4 (6), 1236.
  • Lettenmaier, D.P. and Gan, T.Y., 1990. Hydrologic sensitivities of the Sacramento-San Joaquin River basin, California, to global warming. Water Resources Research, 26 (1), 69–86. doi:10.1029/WR026i001p00069.
  • Li, Z., et al., 2020. Declining snowfall fraction in the alpine regions, Central Asia. Scientific Reports, 10 (1), 1–12. doi:10.1038/s41598-019-56847-4.
  • Linderholm, H.W., et al., 2011. Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. Journal of Geophysical Research: Atmospheres, 116 (D13). doi:10.1029/2010JD015235.
  • Ma, C., et al., 2015. Impact of climate change on the streamflow in the glacierised Chu River Basin, Central Asia. Journal of Arid Land, 7 (4), 501–513. doi:10.1007/s40333-015-0041-0.
  • Mack, T.J., et al., 2010. Conceptual model of water resources in the Kabul Basin, Afghanistan. U.S. Geological Survey Scientific Investigations Report 2009-5262, 239. Available from: https://www.sciencebase.gov/catalog/item/51719310e4b0c560b7055759 [ Accessed 18 Oct 2022].
  • Mack, T.J., et al., 2014. Water resources activities of the US Geological Survey in Afghanistan from 2004 through 2014. U.S. Geological Survey, Fact Sheet 2014-3068. Available from: https://www.sciencebase.gov/catalog/item/53f456b1e4b073ff7739d866 [ Accessed 18 Oct 2022].
  • Mack, T.J., 2018. Groundwater Availability in the Kabul Basin, Afghanistan. In Mukherjee A, editor. Groundwater of South Asia. Singapore: Springer, 23–35.
  • Mack, T.J., Chornack, M.P., and Taher, M.R., 2013. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan. Environment Systems and Decisions, 33 (3), 457–467. doi:10.1007/s10669-013-9455-4.
  • Macpherson, G.L., Johnson, W.C., and Liu, H., 2017. Viability of karezes (ancient water supply systems in Afghanistan) in a changing world. Applied Water Science, 7 (4), 1689–1710. doi:10.1007/s13201-015-0336-5.
  • Mahaqi, A., et al., 2018. Hydrogeochemical characteristics and groundwater quality assessment for drinking and irrigation purposes in the Mazar-i-Sharif city, North Afghanistan. Applied Water Science, 8 (5), 1–10. doi:10.1007/s13201-018-0768-9.
  • Maharjan, S.B., et al., 2018. Status and decadal changes of Glaciers in Afghanistan since 1990sIn: American Geophysical Union AGU fall meeting. Washington D.C: United States. Available from: https://ui.adsabs.harvard.edu/abs/2018AGUFM.C32A.05M/abstract [ Accessed 10-14 Dec 2018].
  • Mahmoodi, S.M., 2008. Integrated water resources management for rural development and environmental protection in Afghanistan. Journal of Developments in Sustainable Agriculture, 3 (1), 9–19.
  • Mahmoodzada, A.B., et al., 2022. Capability assessment of Sentinel-1 data for estimation of snow hydrological potential in the Khanabad watershed in The Hindu Kush Himalayas of Afghanistan. Remote Sensing Applications: Society and Environment, 26, 100758. doi:10.1016/j.rsase.2022.100758.
  • Malyarov, E.P., et al., 1977. The territory of Afghanistan, Gidrogeologicheskoye rayonirovaniye territorii Afganistana, Translated Title: hydrogeological zoning of Afghanistan. Izvestiya Vysshikh Uchebnykh Zavedeniy, Geologiya I Razvedka, 1977 (3), 79–84.
  • Masood, A., et al., 2020. Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary Kabul river in The Hindukush region. Journal of Water and Climate Change, 11 (4), 1521–1538. doi:10.2166/wcc.2019.094.
  • Meier, C., et al., 2013. Stable isotopes in river waters in the Tajik Pamirs: regional and temporal characteristics. Isotopes in Environmental and Health Studies, 49 (4), 542–554. doi:10.1080/10256016.2013.835809.
  • Mergili, M., Müller, J.P., and Schneider, J.F., 2013. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Global and Planetary Change, 107, 13–24. doi:10.1016/j.gloplacha.2013.04.001
  • Mianabadi, A., et al., 2020. International environmental conflict management in transboundary river basins. Water Resources Management, 34 (11), 3445–3464. doi:10.1007/s11269-020-02576-7.
  • Miller, J.D., Immerzeel, W.W., and Rees, G., 2012. Climate change impacts on glacier hydrology and river discharge in The Hindu Kush–Himalayas. Mountain Research and Development, 32 (4), 461–467. doi:10.1659/MRD-JOURNAL-D-12-00027.1.
  • Mishra, A.K. and Singh, V.P., 2010. A review of drought concepts. Journal of Hydrology, 391 (1–2), 202–216. doi:10.1016/j.jhydrol.2010.07.012.
  • Mohanty, A., 2012. Chapter 3 assessing the hydrological impacts of climate change on the Amu Darya River, Afghanistan. In: A. Lamadrid, et al., eds. Climate change modeling for local adaptation in the Hindu Kush-Himalayan region (Community, environment and disaster risk management. Vol. 11. Bingley: Emerald Group Publishing Limited, 33–52.
  • Muhammad, A., Kumar Jha, S., and Rasmussen, P.F., 2017. Drought characterization for a snow-dominated region of Afghanistan. Journal of Hydrologic Engineering, 22 (8), 05017014. doi:10.1061/(ASCE)HE.1943-5584.0001543.
  • Mukherji, A.E., 2015. Himalayan waters at the crossroads: issues and challenges. International Journal of Water Resources Development, 31 (2), 151–160. doi:10.1080/07900627.2015.1040871.
  • Najmuddin, O., Deng, X., and Siqi, J., 2017. Scenario analysis of land use change in Kabul River Basin–a river basin with rapid socio-economic changes in Afghanistan. Physics and Chemistry of the Earth, Parts a/B/C, 101, 121–136. doi:10.1016/j.pce.2017.06.002
  • Nasimi, M.N., Sagin, J., and Wijesekera, N.T.S., 2020. Climate and water resources variation in Afghanistan and the need for urgent adaptation measures. International Journal of Food Science and Agriculture, 4, 49–64.
  • NEPA and UNEP, 2016. Afghanistan: Climate Change Science Perspectives. Kabul, Afghanistan: National Environmental Protection Agency and UN Environment Programme, 35. Available from: https://postconflict.unep.ch/publications/Afghanistan/UNEP_AFG_CC_Science_perspectives.pdf [ Accessed 18 Oct 2022].
  • Nepal, S., et al., 2021. Future snow projections in a small basin of the Western Himalaya. Science of the Total Environment, 795, 148587. doi:10.1016/j.scitotenv.2021.148587.
  • Noori, A.R. and Singh, S.K., 2021. Status of groundwater resource potential and its quality at Kabul, Afghanistan: a review. Environmental Earth Sciences, 80 (18), 1–13. doi:10.1007/s12665-021-09954-3.
  • Omani, N., et al., 2017. Glacier mass balance simulation using SWAT distributed snow algorithm. Hydrological Sciences Journal, 62 (4), 546–560. doi:10.1080/02626667.2016.1162907.
  • Östrem, G., 1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler, 41 (4), 228–230. doi:10.1080/20014422.1959.11907953.
  • Pisharoty, P.R. and Desai, B.N., 1956. Western disturbances and Indian weather. Indian Journal of Meteorology & Geophysics, 7, 333–338.
  • Pörtner, H.O., et al., 2022. Climate change 2022: impacts, adaptation and vulnerability: sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • Prasad, A.K., et al., 2009. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). In: Annales Geophysicae, Vol. 27. 12. Copernicus GmbH, 4505–4519.
  • Pritchard, H.D., 2019. Asia’s shrinking glaciers protect large populations from drought stress. Nature, 569 (7758), 649–654. doi:10.1038/s41586-019-1240-1.
  • Qutbudin, I., et al., 2019. Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water, 11 (5), 1096. doi:10.3390/w11051096.
  • Saffi, M.H., 2011. Groundwater natural resources and quality concern in Kabul Basin, Afghanistan. Kabul, Afghanistan: DACAAR (Danish Committee for Aid to Afghan Refugees).
  • Saffi, M.H., et al., 2019. Hydro-geological booklet Sar-i-Pul province. Danish Committee for Aid to Afghan Refugees. Kabul, Afghanistan. Available from: https://dacaar.org/research-and-studies/ [ Accessed 18 Oct 2022].
  • Saffi, M.H. and Eqrar, M.N., 2016. Arsenic contamination of groundwater in Ghazni and Maidan Wardak Provinces, Afghanistan. In: Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), 19-23 June 2016, Stockholm, Sweden: CRC Press, 41.
  • Saffi, M.H. and Kohistani, A.J., 2013. Water resources potential, quality problems, challenges and solutions in Afghanistan. Danish Committee for Aid to Afghan Refugees. Kabul: Scientific Investigation Report. Available from: http://www.cawater-info.net/afghanistan/pdf/wrp.pdf [ Accessed 18 Oct 2022].
  • Saffi, M.H. and Leendert, V., 2007. Groundwater resources at risk in Afghanistan. Danish Committee for aid to Afghan Refugees. Kabul: Scientific Investigation Report. Available from: https://doi.org/10.13140/RG.2.1.4465.7128 [ Accessed 18 Oct 2022].
  • Sajood, A., 2020. Climate change impact on water resources and glaciers of Upper Kabul River Basins. International Journal of Creative Research Thoughts (IJCRT), 8 (11), 296–304. doi:10.1729/Journal.24963.
  • Salehie, O., et al., 2022. Assessment of water resources availability in Amu Darya River Basin using GRACE data. Water, 14 (4), 533. doi:10.3390/w14040533.
  • Saloranta, T., et al., 2019. A model setup for mapping snow conditions in High-Mountain Himalaya. Frontiers in Earth Science, 7, 129. doi:10.3389/feart.2019.00129.
  • Sarikaya, M.A., et al. 2012. Space-based observations of Eastern Hindukush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Letters, 3 (1), 77–84. doi:10.1080/01431161.2010.536181.
  • Savage, M., et al., 2009. Socio-economic impacts of climate change in Afghanistan. Stockholm Environment Institute: Oxford, UK. Available from: https://unama.unmissions.org/sites/default/files/2007447_AfghanCC_ExS_09MAR09.pdf [ Accessed 18 Oct 2022].
  • Schaefli, B. and Huss, M., 2011. Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences, 15 (4), 1227–1241. doi:10.5194/hess-15-1227-2011.
  • Scherler, D., Bookhagen, B., and Strecker, M.R., 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4 (3), 156–159. doi:10.1038/ngeo1068.
  • Sediqi, M.N., et al., 2019. Spatio-temporal pattern in the changes in availability and sustainability of water resources in Afghanistan. Sustainability, 11 (20), 5836. doi:10.3390/su11205836.
  • Shobair, S.S. and Alim, A.K., 2004. The effects of calamities on water resources and consumption in Afghanistan. Rome: Food and Agriculture Organization of the United Nations (FAO). Available from: http://www.nourin.tsukuba.ac.jp/~tasae/2004/Afghanistan.pdf [ Accessed 18 Oct 2022].
  • Shokory, J.A.N., et al., 2017. Intra-seasonal variation of rainfall and climate characteristics in Kabul River Basin. Central Asian Journal of Water Research (CAJWR), 3 (2), 24–40.
  • Shokory, J.A.N. and Rabanizada, E., 2020. Sustainable household water-saving and demand management options for Kabul City. In: IOP Conference Series: Earth and Environmental Science, 511, 1. IOP Publishing, 012003.
  • Shokory, J.A.N., Tsutsumi, J.I.G., and Sakai, K., 2016. Flood modeling and simulation using iRIC: a case study of Kabul City. In: 3rd European Conference on Flood Risk Management (FLOODrisk 2016), E3S web of conferences. EDP Sciences, 7, 04003.
  • Shrestha, S., et al., 2016. Managing water resources under climate uncertainty. Germany: Springer.
  • Shroder, J.F., 1980. Special problems of glacial inventory in Afghanistan. In: World Glacial Inventory Proceedings Riederalp Workshop, September 1978 (IAHS-AISH Publication No. 126), International Association of Hydrological Sciences, Rennes: France, 142–147.
  • Shroder, J.F., 2014. Natural resources in Afghanistan: geographic and geologic perspectives on centuries of conflict. San Diego: Elsevier.
  • Shroder, J., 2016. H2O hazards, risks, and disasters in Afghanistan and surrounding Countries. In: J. Shroder and S.J. Ahmadzai, eds. Transboundary water resources in Afghanistan. Netherlands: Elsevier, 121–144.
  • Shroder, J.F., et al., 2022. Review of the Geology of Afghanistan and its water resources. International Geology Review, 64 (7), 1009–1031. doi:10.1080/00206814.2021.1904297.
  • Shroder, J.F. and Ahmadzai, S.J., 2016. Transboundary water resources in Afghanistan: climate change and land-use implications. St. Louis: Elsevier.
  • Shroder, J.F. and Bishop, M.P., 2010. Glaciers of Afghanistan [ online]. Available from: https://pubs.usgs.gov/pp/p1386f/pdf/F3_Afghanistan.pdf [ Accessed 18 Oct 2022].
  • Sidiqi, M. and Shrestha, S., 2021. Assessment of climate change impact on the hydrology of the Kabul River Basin, Afghanistan. J. Water Eng. Manag, 2, 1–21. doi:10.47884/jweam.v2i1pp01-21.
  • Sidiqi, M., Shrestha, S., and Ninsawat, S., 2018. Projection of climate change scenarios in the Kabul River Basin, Afghanistan. Current Science, 114 (6), 1304–1310. doi:10.18520/cs/v114/i06/1304-1310.
  • Sinfield, L. and Shroder, J., 2016. Ground-water geology of Afghanistan. In: J. Shroder and S.J. Ahmadzai, eds. Transboundary water resources in Afghanistan. Netherlands: Elsevier, 41–90.
  • Singh, V., Jain, S.K., and Goyal, M.K., 2021. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stochastic Environmental Research and Risk Assessment, 35 (10), 2067–2092. doi:10.1007/s00477-021-01987-1.
  • Sorg, A., et al., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2 (10), 725–731. doi:10.1038/nclimate1592.
  • Sorrel, P., et al., 2007. Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quaternary Research, 67 (3), 357–370. doi:10.1016/j.yqres.2006.11.006.
  • Sundem, L., 2015. Quality of drinking water in Afghanistan. Thesis (Master’s). Norwegian University of Life Sciences.
  • Syed, F.S., et al., 2006. Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theoretical and Applied Climatology, 86 (1), 147–160. doi:10.1007/s00704-005-0217-1.
  • Tani, H. and Tayfur, G., 2021. Identification of groundwater potential zones in Kabul River Basin, Afghanistan. Groundwater for Sustainable Development, 15, 100666. doi:10.1016/j.gsd.2021.100666
  • Tiwari, V., et al., 2020. Wheat area mapping in Afghanistan based on optical and SAR time-series images in google earth engine cloud environment. Frontiers in Environmental Science, 8, 77. doi:10.3389/fenvs.2020.00077.
  • Uhl, W.V. and Tahiri, M.Q., 2003. An overview of groundwater resources and challenges. Washington Crossing, PA, USA: Uhl, Baron, Rana Associates.
  • Unger-Shayesteh, K., et al., 2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, 110, 4–25. doi:10.1016/j.gloplacha.2013.02.004.
  • Vanham, D., Fleischhacker, E., and Rauch, W., 2008. Seasonality in alpine water resources management–a regional assessment. Hydrology and Earth System Sciences, 12 (1), 91–100. doi:10.5194/hess-12-91-2008.
  • Van Loon, A.F., 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2 (4), 359–392. doi:10.1002/wat2.1085.
  • Wang, Z., et al., 2012. Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrological Processes, 26 (18), 2733–2744. doi:10.1002/hyp.8378.
  • World Bank, 2017. Disaster Risk Profile – Afghanistan [ Online], The World Bank and the Global Facility for Disaster Reduction and Recovery, 17. Available from: http://www.preventionweb.net/countries/afg/data/ [ Accessed 18 Oct 2022].
  • Zaryab, A., et al., 2022a. Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Science of the Total Environment, 823, 153749. doi:10.1016/j.scitotenv.2022.153749.
  • Zaryab, A., Nassery, H.R., and Alijani, F., 2021. Identifying sources of groundwater salinity and major hydrogeochemical processes in the Lower Kabul Basin aquifer, Afghanistan. Environmental Science. Processes & Impacts, 23 (10), 1589–1599.
  • Zaryab, A., Nassery, H.R., and Alijani, F., 2022b. The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrogeology Journal, 30 (2), 429–443. doi:10.1007/s10040-021-02445-6.