559
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Role of large-scale climate oscillations in precipitation extremes associated with atmospheric rivers: nonstationary framework

, &
Pages 395-411 | Received 15 Jun 2022, Accepted 18 Nov 2022, Published online: 23 Jan 2023

References

  • Accadia, C., et al., 2003. Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Weather and Forecasting, 18 (5), 918–932. https://doi.org/10.1175/1520-0434(2003)018
  • Agilan, V. and Umamahesh, N.V., 2018. El Niño Southern oscillation cycle indicator for modeling extreme rainfall intensity over India. Ecological Indicators, 84, 450–458. doi:10.1016/j.ecolind.2017.09.012
  • Backes, T.M., et al., 2015. A climatology of the vertical structure of water vapor transport to the Sierra Nevada in cool season atmospheric river precipitation events. Journal of Hydrometeorology, 16 (3), 1029–1047. doi:10.1175/JHM-D-14-0077.1
  • Beniston, M., 2015. Ratios of record high to record low temperatures in Europe exhibit sharp increases since 2000 despite a slowdown in the rise of mean temperatures. Climatic Change, 129 (1–2), 225–237. doi:10.1007/s10584-015-1325-2
  • Blamey, R.C., et al., 2018. The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. Journal of Hydrometeorology, 19 (1), 127–142. doi:10.1175/JHM-D-17-0111.1
  • Bracken, C., et al., 2018. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resources Research, 54 (1), 243–255. doi:10.1002/2017WR020403
  • Coles, S., 2001. An introduction to statistical modeling of extreme values. Berlin: Springer Verlag. doi:10.1007/978-1-4471-3675-0
  • Coumou, D., Robinson, A., and Rahmstorf, S., 2013. Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118 (3–4), 771–782. doi:10.1007/s10584-012-0668-1
  • Das, J., Jha, S., and Goyal, M.K., 2020a. Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India. Journal of Hydrology, 580, 124356. doi:10.1016/j.jhydrol.2019.124356
  • Das, J., Jha, S., and Goyal, M.K., 2020b. On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: wavelet & global coherence approaches. Atmospheric Research, 238, 104889. doi:10.1016/j.atmosres.2020.104889
  • Das, J., Jha, S., and Goyal, M.K., 2020c. On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: wavelet & global coherence approaches. Atmospheric Research, 238, 104889. doi:10.1016/j.atmosres.2020.104889
  • Das, J., Jha, S., and Goyal, M.K., 2020d. On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: wavelet & global coherence approaches. Atmospheric Research, 238, 104889. doi:10.1016/j.atmosres.2020.104889
  • Das, J., Jha, S., and Goyal, M.K., 2020e. Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India. Journal of Hydrology, 580, 124356. doi:10.1016/j.jhydrol.2019.124356
  • Deser, C., 2000. On the teleconnectivity of the “Arctic oscillation.”. Geophysical Research Letters, 27 (6), 779–782. doi:10.1029/1999GL010945
  • Dettinger, M., 2011. Climate change, atmospheric rivers, and floods in california – a multimodel analysis of storm frequency and magnitude changes1. JAWRA Journal of the American Water Resources Association, 47 (3), 514–523. doi:10.1111/j.1752-1688.2011.00546.x
  • Dhana Lakshmi, D. and Satyanarayana, A.N.V., 2019. Influence of atmospheric rivers in the occurrence of devastating flood associated with extreme precipitation events over Chennai using different reanalysis data sets. Atmospheric Research, 215, 12–36. doi:10.1016/j.atmosres.2018.08.016
  • Dong, X., 2016. Influences of the Pacific Decadal oscillation on the East Asian Summer monsoon in non-ENSO years. Atmospheric Science Letters, 17 (1), 115–120. doi:10.1002/asl.634
  • Dubey, S., et al., 2021. Evaluation of precipitation datasets available on Google earth engine over India. International Journal of Climatology, 41 (10), 4844–4863. doi:10.1002/joc.7102
  • Gao, T., Wang, H.J., and Zhou, T., 2017. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmospheric Research, 197, 379–389. doi:10.1016/j.atmosres.2017.07.017
  • Gao, Y., et al., 2015. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophysical Research Letters, 42 (17), 7179–7186. doi:10.1002/2015GL065435
  • Gershunov, A., et al., 2017. Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters, 44 (15), 7900–7908. doi:10.1002/2017GL074175
  • Gershunov, A., et al., 2019. Precipitation regime change in Western North America: the role of atmospheric rivers. Scientific Reports, 9 (1), 9944. doi:10.1038/s41598-019-46169-w
  • Gimeno, L., et al., 2014a. Atmospheric rivers: a mini-review. Front Earth Science (Lausanne), 2, 2. doi:10.3389/feart.2014.00002
  • Gimeno, L., et al., 2014b. Atmospheric rivers: a mini-review. Front Earth Science (Lausanne), 2, 1–6. doi:10.3389/feart.2014.00002
  • Gorodetskaya, I.V., et al., 2014. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41 (17), 6199–6206. doi:10.1002/2014GL060881
  • Goswami, U.P., Hazra, B., and Goyal, M.K., 2018. Copula-based probabilistic characterization of precipitation extremes over North Sikkim Himalaya. Atmospheric Research, 212, 273–284. doi:10.1016/j.atmosres.2018.05.019
  • Goyal, M.K. and Ojha, C.S.P., 2012. Downscaling of precipitation on a lake basin: evaluation of rule and decision tree induction algorithms. Hydrology Research, 43 (3), 215–230. doi:10.2166/nh.2012.040
  • Goyal, M.K., Ojha, C.S.P., and Burn, D.H., 2012. Nonparametric statistical downscaling of temperature, precipitation, and evaporation in a semiarid region in India. Journal of Hydrologic Engineering, 17 (5), 615–627. doi:10.1061/(ASCE)HE.1943-5584.0000479
  • Guan, B., 2020. Tracking atmospheric rivers globally : spatial distributions and temporal evolution of life cycle characteristics. Journal of Geophysical Research: Atmospheres. doi:10.1029/2019JD031205
  • Guan, B. and Waliser, D.E., 2015. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120 (24), 12514–12535. doi:10.1002/2015JD024257
  • Guan, J.K.B., Ferraro, D.E.W.R.D., and Iguchi, J.L.C.T., 2018. Winter precipitation characteristics in western US related to atmospheric river landfalls : observations and model evaluations. Climate Dynamics, 50 (1–2), 231–248. doi:10.1007/s00382-017-3601-5
  • Guirguis, K., et al., 2019. Atmospheric rivers impacting Northern California and their modulation by a variable climate. Climate Dynamics, 52 (11), 6569–6583. doi:10.1007/s00382-018-4532-5
  • Guo, X., et al., 2021. Atmospheric rivers over the Indo-Pacific and its associations with the Boreal Summer intraseasonal oscillation. Journal of Climate, 34, 9711–9728. doi:10.1175/JCLI-D-21-0290.1
  • Jha, S., Das, J., and Goyal, M.K., 2021a. Low frequency global-scale modes and its influence on rainfall extremes over India: nonstationary and uncertainty analysis. International Journal of Climatology, 41 (3), 1873–1888. doi:10.1002/joc.6935
  • Jha, S., et al., 2019. Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Global and Planetary Change, 176, 23–35. doi:10.1016/j.gloplacha.2019.01.014
  • Jha, S., et al., 2021b. A novel analysis of COVID 19 risk in India incorporating climatic and socioeconomic Factors. Technological Forecasting and Social Change, 167, 120679. doi:10.1016/j.techfore.2021.120679
  • Katz, R.W., 2013. Statistical methods for nonstationary extremes. In: A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, S. Sorooshian, eds. Extremes in a changing climate. Water Science and Technology Library. Dordrecht: Springer, 15–37. doi:10.1007/978-94-007-4479-0_2
  • Kendall, M.G., 1975. Rank correlation methods. London, U.K: Charles Griffin.
  • Khaki, M., et al., 2018. Understanding the association between climate variability and the Nile’s water level fluctuations and water storage changes during 1992–2016. Science of the Total Environment, 645, 1509–1521. doi:10.1016/j.scitotenv.2018.07.212
  • Kim, J., et al., 2021. Precipitation characteristics related to atmospheric rivers in East Asia. International Journal of Climatology, 41 (S1), E2244–E2257. doi:10.1002/joc.6843
  • Krishna, K.K., Balaji, R., and Cane, M.A., 1999. On the weakening relationship between the Indian monsoon and ENSO. Science, 284 (5423), 2156–2159. doi:10.1126/science.284.5423.2156
  • Kumar, N., et al., 2021. Joint behaviour of climate extremes across India: past and future. Journal of Hydrology, 597, 9993. doi:10.1016/j.jhydrol.2021.126185
  • Lavers, D.A., et al., 2011. Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters, 38. doi:10.1029/2011GL049783
  • Lavers, D.A., et al., 2015. Climate change intensification of horizontal water vapor transport in CMIP5. Geophysical Research Letters, 42 (13), 5617–5625. doi:10.1002/2015GL064672
  • Lavers, D.A. and Villarini, G., 2013. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 40 (12), 3259–3264. doi:10.1002/grl.50636
  • Liang, J. and Yong, Y., 2021. Climatology of atmospheric rivers in the Asian monsoon region. International Journal of Climatology, 41 (S1), E801–E818. doi:10.1002/joc.6729
  • Mann, H.B., 1945. Nonparametric Tests Against Trend. Econometrica, 13 (3), 245–259. https://doi.org/10.2307/1907187
  • McCabe, G.J. and Dettinger, M.D., 1999. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. International Journal of Climatology, 19 (13), 1399–1410. doi:10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A
  • Michel, C., et al., 2021. Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway - Seasonal and regional aspects. Weather and Climate Extremes, 34, 100370. doi:10.1016/j.wace.2021.100370
  • Neiman, P.J., et al., 2002. The statistical relationship between upslope flow and rainfall in California’s coastal mountains: observations during CALJET. Monthly Weather Review, 130 (6), 1468–1492. doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2
  • Neiman, P.J., et al., 2008. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9 (1), 22–47. doi:10.1175/2007JHM855.1
  • Neiman, P., et al., 2009. A water vapor flux tool for precipitation forecasting. Proceedings of the Institution of Civil Engineers-Water Management 162, 83–94. doi:10.1680/wama.2009.162.2.83
  • Neiman, P.J., et al., 2011. Flooding in Western Washington: the connection to atmospheric rivers. Journal of Hydrometeorology, 12 (6), 1337–1358. doi:10.1175/2011JHM1358.1
  • Neiman, P.J., et al., 2013. The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Journal of Hydrometeorology, 14 (2), 460–484. doi:10.1175/JHM-D-12-0101.1
  • NOAA, n.d. Climate.gov: science and information for a climate-smart nation. Available from: https://www.climate.gov/ [Accessed 20 September 2022].
  • Panda, D.K., et al., 2016. The 20th century transitions in basic and extreme monsoon rainfall indices in India: comparison of the ETCCDI indices. Atmospheric Research, 181, 220–235. doi:10.1016/j.atmosres.2016.07.002
  • Parey, S., Hoang, T.T.H., and Dacunha-Castelle, D., 2010. Different ways to compute temperature return levels in the climate change context. Environmetrics, 21 (7–8), 698–718. doi:10.1002/env.1060
  • Pechlivanidis, I.G., et al., 2017. Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions. Climatic Change, 141 (3), 467–481. doi:10.1007/s10584-016-1723-0
  • Polade, S.D., et al., 2013. Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophysical Research Letters, 40 (10), 2296–2301. doi:10.1002/grl.50491
  • Poonia, V., Jha, S., and Goyal, M.K., 2021. Copula based analysis of meteorological, hydrological and agricultural drought characteristics across Indian river basins. International Journal of Climatology, 41(9), 4637–4652. n/a. doi:10.1002/joc.7091
  • Prince, H.D., et al., 2021. A climatology of atmospheric rivers in New Zealand. Journal of Climate, 34 (11), 4383–4402. doi:10.1175/JCLI-D-20-0664.1
  • Ralph, F.M. and Dettinger, M.D., 2011. Storms, floods, and the science of atmospheric rivers. Eos, Transactions American Geophysical Union, 92 (32), 265–266. doi:10.1029/2011EO320001
  • Ralph, F.M., Neiman, P.J., and Wick, G.A., 2004. Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the Winter of 1997/98. Monthly Weather Review, 132 (7), 1721–1745. doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
  • Rutz, J.J. and Steenburgh, W.J., 2012. Quantifying the role of atmospheric rivers in the interior western United States. Atmospheric Science Letters, 13 (4), 257–261. https://doi.org/10.1002/asl.392
  • Rutz, J.J., Steenburgh, W.J., and Ralph, F.M., 2013. Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States. Monthly Weather Review, 142 (2), 905–921. doi:10.1175/MWR-D-13-00168.1
  • Sahu, N., et al., 2012. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia. Climate Dynamics, 39 (7–8), 1673–1680. doi:10.1007/s00382-011-1158-2
  • Salas, J. and Obeysekera, J., 2014. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 19 (3), 554–568. doi:10.1061/(ASCE)HE.1943-5584.0000820
  • Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934
  • Sharma, A. and Goyal, M.K., 2020a. Assessment of drought trend and variability in India using wavelet transform. Hydrological Sciences Journal, 65 (9), 1539–1554. doi:10.1080/02626667.2020.1754422
  • Sharma, A. and Goyal, M.K., 2020b. Assessment of drought trend and variability in India using wavelet transform. Hydrological Sciences Journal, 65 (9), 1539–1554. doi:10.1080/02626667.2020.1754422
  • Sharma, A.R. and Déry, S.J., 2020. Variability and trends of landfalling atmospheric rivers along the Pacific Coast of northwestern North America. International Journal of Climatology, 40 (1), 544–558. doi:10.1002/joc.6227
  • Shi, P., et al., 2017. How do the multiple large-scale climate oscillations trigger extreme precipitation? Global and Planetary Change, 157, 48–58. doi:10.1016/j.gloplacha.2017.08.014
  • Shivam, Goyal, M.K., and Sarma, A.K., 2017. Analysis of the change in temperature trends in Subansiri River basin for RCP scenarios using CMIP5 datasets. Theoretical and Applied Climatology, 129 (3–4), 1175–1187. doi:10.1007/s00704-016-1842-6
  • Song, X., et al., 2019. Changes in precipitation extremes in the Beijing metropolitan area during 1960–2012. Atmospheric Research, 222, 134–153. doi:10.1016/j.atmosres.2019.02.006
  • Tan, M.L., Ramli, H.P., and Tam, T.H., 2018. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, 32 (14), 4591–4606. doi:10.1007/s11269-018-2072-8
  • Yang, Y., et al., 2018. Atmospheric rivers over the Bay of Bengal lead to northern Indian extreme rainfall. International Journal of Climatology, 38 (2), 1010–1021. doi:10.1002/joc.5229
  • Yilmaz, A.G. and Perera, B.J.C., 2014. Extreme rainfall nonstationarity investigation and intensity–frequency–duration relationship. Journal of Hydrologic Engineering, 19 (6), 1160–1172. doi:10.1061/(ASCE)HE.1943-5584.0000878
  • Zhu, Y. and Newell, R.E., 1998. A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review, 126 (3), 725–735. doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.