1,680
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Probabilistic mapping and sensitivity assessment of dam-break flood hazard

, ORCID Icon & ORCID Icon
Pages 700-718 | Received 09 Nov 2021, Accepted 20 Dec 2022, Published online: 06 Apr 2023

References

  • Abdedou, A., Soulaïmani, A., and Tchamen, G.W., 2020. Uncertainty propagation of dam break flow using the stochastic non-intrusive B-splines Bézier elements-based method. Journal of Hydrology, 590, 125342. doi:10.1016/j.jhydrol.2020.125342
  • Abdulrahman, K.Z., et al., 2022. Hypothetical failure of the Khassa Chai dam and flood risk analysis for Kirkuk, Iraq. Natural Hazards, 113 (3), 1833–1851. doi:10.1007/s11069-022-05371-2
  • Abt, S.R., et al., 1989. Human stability in a high flood hazard zone. Journal of the American Water Resources Association, 25 (4), 881–890. doi:10.1111/j.1752-1688.1989.tb05404.x
  • Ahmadisharaf, E., et al., 2016. A probabilistic framework for comparison of dam breach parameters and outflow hydrograph generated by different empirical prediction methods. Environmental Modelling and Software, 86, 248–263. doi:10.1016/j.envsoft.2016.09.022
  • Ahmadisharaf, E., Bhuyian, M.N.M., and Kalyanapu, A., 2013. Impact of spatial resolution on downstream flood hazard due to dam break events using probabilistic flood modeling. In: ASDSO Annual Conference 2013, 8–12 September 2013, Providence, RI. Red Hook, NY: Curran Associates, Inc., 263–276. Available from: https://media.goldsim.com/Documents/TechnicalPapers/Ahmadisharafetal.2013_FinalPaper.pdf [Accessed 28 Oct 2022].
  • Ahmadisharaf, E., Kalyanapu, A.J., and Bates, P.D., 2018. A probabilistic framework for floodplain mapping using hydrological modeling and unsteady hydraulic modeling. Hydrological Sciences Journal, 63 (12), 1759–1775. doi:10.1080/02626667.2018.1525615
  • Albano, R., et al., 2019. A GIS tool for mapping dam-break flood hazards in Italy. ISPRS International Journal of Geo-Information, 8 (6), 250. doi:10.3390/ijgi8060250
  • Álvarez, M., et al., 2017. Two-dimensional dam-break flood analysis in data-scarce regions: the case study of Chipembe dam, Mozambique. Water, 9 (6), 432. doi:10.3390/w9060432
  • Aureli, F., et al., 2008. 2D numerical modelling for hydraulic hazard assessment: a dam-break case study. In: M.S. Altinakar, et al., eds. River Flow 2008, International Conference on Fluvial Hydraulics, 3–5 September 2008, Çeşme, Izmir, Turkey. Ankara, Turkey: KUBABA Congress Department and Travel Services, Vol. 1, 729–736.
  • Aureli, F., Maranzoni, A., and Petaccia, G., 2021. Review of historical dam-break events and laboratory tests on real topography for the validation of numerical models. Water, 13 (14), 1968. doi:10.3390/w13141968
  • Australian National Committee on Large Dams, 2012. Guidelines on the consequence categories for dams. Hobart, Tasmania: ANCOLD.
  • Baecher, G.B., Paté, M.E., and De Neufville, R., 1980. Risk of dam failure in benefit-cost analysis. Water Resources Research, 16 (3), 449–456. doi:10.1029/WR016i003p00449
  • Bartholomew, C.L., 1989. Failure of concrete dams. In: Dam Safety 1989 – 6th ASDSO Annual Conference, 1–5 October 1989, Albuquerque, NM. Available from: https://damfailures.org/wp-content/uploads/2015/07/Failure-of-Concrete-Dams.pdf [Accessed 28 Oct 2022].
  • Bates, P.D., 2022. Flood inundation prediction. Annual Review of Fluid Mechanics, 54 (1), 287–315. doi:10.1146/annurev-fluid-030121-113138
  • Bellos, V., et al., 2020. Propagating dam breach parametric uncertainty in a river reach using the HEC-RAS software. Hydrology, 7 (4), 72. doi:10.3390/hydrology7040072
  • Beven, K., et al., 2015. Communicating uncertainty in flood inundation mapping: a case study. International Journal of River Basin Management, 13 (3), 285–295. doi:10.1080/15715124.2014.917318
  • Beven, K.J., et al., 2018. Epistemic uncertainties and natural hazard risk assessment–Part 1: a review of different natural hazard areas. Natural Hazards and Earth System Sciences, 18 (10), 2741–2768. doi:10.5194/nhess-18-2741-2018
  • Bornschein, A., 2018. Combined influence of terrain model and roughness in dam break wave simulation. E3S Web of Conferences, 40, 06026. doi:10.1051/e3sconf/20184006026
  • Chow, V.T., 1959. Open-channel hydraulics. New York, NY: McGraw-Hill.
  • Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Applied hydrology. New York, NY: McGraw-Hill.
  • Circular from the Italian Prime Minister 13.12.1995, n. DSTN/2/22806, 1995. Disposizioni attuative e integrative in materia di dighe. Allegato–Raccomandazioni per la mappatura delle aree a rischio di inondazione conseguente a manovre degli organi di scarico o ad ipotetico collasso delle dighe. [Implementional and supplementary instructions on dams. Attachement–Recommendations for the mapping of areas at risk of flooding resulting from manoeuvres of dam spillways and outlets or the hypothetical collapse of dams]. Official Gazette of the Italian Republic, no. 56 of 7 March 1996 (in Italian).
  • Dawson, R., et al., 2005. Sampling-based flood risk analysis for fluvial dike systems. Stochastic Environmental Research and Risk Assessment, 19 (6), 388–402. doi:10.1007/s00477-005-0010-9
  • Department for Environment, Food and Rural Affairs. 2006. Flood risks to people (FD2321/TR2 Guidance Document). London, UK: DEFRA, Environment Agency. Available from: https://assets.publishing.service.gov.uk/media/602bbc3de90e07055f646148/Flood_risks_to_people_-_Phase_2_Guidance_Document_Technical_report.pdf [ Accessed 28 Oct 2022].
  • Dewals, B. et al., 2014. Dam break flow modelling with uncertainty analysis. In: P. Gourbesville, J. Cunge, and G. Caignaert, eds. Advances in hydroinformatics. Singapore: Springer, 107–116. doi:10.1007/978-981-4451-42-0_9
  • Di Baldassarre, G., et al., 2009. Probability-weighted hazard maps for comparing different flood risk management strategies: a case study. Natural Hazards, 50 (3), 479–496. doi:10.1007/s11069-009-9355-6
  • Di Baldassarre, G., et al., 2010. Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 55 (3), 364–376. doi:10.1080/02626661003683389
  • Directive of the Italian Prime Minister 08.07.2014,2014. Indirizzi operativi inerenti l’attività di protezione civile nell’ambito dei bacini in cui siano presenti grandi dighe. [Operational guidelines concerning civil protection activities within basins where large dams are present]. Official Gazette of the Italian Republic, no. 256 of 4 November 2014 (in Italian).
  • Domeneghetti, A., et al., 2013. Probabilistic flood hazard mapping: effects of uncertain boundary conditions. Hydrology and Earth System Sciences, 17 (8), 3127–3140. doi:10.5194/hess-17-3127-2013
  • D’Oria, M., Maranzoni, A., and Mazzoleni, M., 2019. Probabilistic assessment of flood hazard due to levee breaches using fragility functions. Water Resources Research, 55 (11), 8740–8764. doi:10.1029/2019WR025369
  • Douglas, K., Spannagle, M., and Fell, R., 1999. Analysis of concrete and masonry dam incidents. International Journal on Hydropower and Dams, 6 (4), 108–115.
  • El Bilali, A., et al., 2022. A practical probabilistic approach for simulating life loss in an urban area associated with a dam-break flood. International Journal of Disaster Risk Reduction, 76, 103011. doi:10.1016/j.ijdrr.2022.103011
  • Ellingwood, B. and Tekie, P.B., 2001. Fragility analysis of concrete gravity dams. Journal of Infrastructure Systems, 7 (2), 41–48. doi:10.1061/(ASCE)1076-0342(2001)7:2(41)
  • Environment Agency, 2012. A framework for validating probabilistic (flood) models. Project Summary SC090008/S2. https://assets.publishing.service.gov.uk/media/6033a1d38fa8f543294411a6/A_framework_for_validating_probabilistic__flood__models_summary.pdf[Accessed 28 Oct 2022].
  • Federal Emergency Management Agency, 2013. Federal guidelines for inundation mapping of flood risks associated with dam incidents and failures (FEMA P-946). Washington, DC: FEMA, US Department of Homeland Security. Available from: https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_inundation-mapping-flood-risks.pdf [ Accessed 28 Oct 2022].
  • Fell, R., et al., 2000. The status of methods for estimation of the probability of failure of dams for use in quantitative risk assessment. In: 20th International Congress on Large Dams, 19–22 September 2000, Beijing, China. ICOLD, Central Office. Available from: https://www.researchgate.net/profile/David-Bowles-3/publication/2324704_The_Status_Of_Methods_For_Estimation_Of_The_Probability_Of_Failure_Of_Dams_For_Use_In_Quantitative_Risk_Assessment/links/0912f51007ae606c49000000/The-Status-Of-Methods-For-Estimation-Of-The-Probability-Of-Failure-Of-Dams-For-Use-In-Quantitative-Risk-Assessment.pdf [Accessed 28 Oct 2022].
  • Foster, M., Fell, R., and Spannagle, M., 2000. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37 (5), 1000–1024. doi:10.1139/t00-030
  • Froehlich, D.C., 2008. Embankment dam breach parameters and their uncertainties. Journal of Hydraulic Engineering, 134 (12), 1708–1721. doi:10.1061/(ASCE)0733-9429(2008)134:12(1708)
  • Hall, J.W., et al., 2003. A methodology for national-scale flood risk assessment. Proceedings of the Institution of Civil Engineers - Water and Maritime Engineering, 156 (3), 235–247. doi:10.1680/wame.2003.156.3.235
  • Hall, J.W., et al., 2005. Distributed sensitivity analysis of flood inundation model calibration. Journal of Hydraulic Engineering, 131 (2), 117–126. doi:10.1061/(ASCE)0733-9429(2005)131:2(117)
  • Hariri-Ardebili, M.A. and Saouma, V.E., 2016. Collapse fragility curves for concrete dams: comprehensive study. Journal of Structural Engineering, 142 (10), 04016075. doi:10.1061/(ASCE)ST.1943-541X.0001541
  • Hinks, J.L., Kitamura, Y., and Murphy, A.T., 2015. Risk analyses for large dams. In: R.M. Gunn, et al., eds. 13th ICOLD International Benchmark Workshop on the Numerical Analysis of Dams, 9–11 September 2015, Lausanne, Switzerland. Swiss Committee on Dams, 277–284. Available from: https://www.itcold.it/wpsysfiles/wp-content/uploads/2018/02/ICOLD_Compudams_BW13_Lausanne_2015.pdf [Accessed 28 Oct 2022].
  • Indian Central Water Commission, 2018. Guidelines for mapping flood risks associated with dams (CDSO_GUD_DS_05_v1.0). New Delhi, India: Central Water Commission, Central Dam Safety Organisation. Available from: https://damsafety.cwc.gov.in/ecm-includes/PDFs/Guidelines_for_Mapping_Flood_Risks_Associated_with_Dams.pdf [ Accessed 9 Nov 2022].
  • International Commission on Large Dams, 1995. Dam failures. Statistical analysis (Bulletin 99). Paris, France: ICOLD.
  • International Commission on Large Dams, 1998. Dam-break flood analysis. Review and recommendations (Bulletin 111). Paris, France: ICOLD.
  • Italian Association of the Electricity Distribution Companies. 1953. Le dighe di ritenuta degli impianti idroelettrici italiani [Dams of the Italian hydroelectric plants], Vol. VII. Milan, Italy: ANIDEL, 223–233 (in Italian).
  • Jung, Y. and Merwade, V., 2012. Uncertainty quantification in flood inundation mapping using generalized likelihood uncertainty estimate and sensitivity analysis. Journal of Hydrologic Engineering, 17 (4), 507–520. doi:10.1061/(ASCE)HE.1943-5584.0000476
  • Kalinina, A., et al., 2020. Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks. Energies, 13 (14), 3685. doi:10.3390/en13143685
  • Kreibich, H., et al., 2009. Is flow velocity a significant parameter in flood damage modelling? Natural Hazards and Earth System Sciences, 9 (5), 1679–1692. doi:10.5194/nhess-9-1679-2009
  • MacDonald, T.C. and Langridge-Monopolis, J., 1984. Breaching characteristics of dam failures. Journal of Hydraulic Engineering, 110 (5), 567–586. doi:10.1061/(ASCE)0733-9429(1984)110:5(567)
  • Maranzoni, A., D’Oria, M., and Mazzoleni, M., 2022. Probabilistic flood hazard mapping considering multiple levee breaches. Water Resources Research, 58 (4), e2021WR030874. doi:10.1029/2021WR030874
  • Maranzoni, A., D’Oria, M., and Rizzo, C., 2023. Quantitative flood hazard assessment methods: a review. Journal of Flood Risk Management, 16 (1), e12855. doi:10.1111/jfr3.12855
  • Martin, J.D. and Gray, L.N., 1971. Measurement of relative variation: sociological examples. American Sociological Review, 36 (3), 496–502. doi:10.2307/2093089
  • Mazzoleni, M., et al., 2014. Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. Journal of Hydrologic Engineering, 19 (4), 717–731. doi:10.1061/(ASCE)HE.1943-5584.0000840
  • Merz, B., Thieken, A.H., and Gocht, M., 2007. Flood risk mapping at the local scale: concepts and challenges. In: S. Begum, M.J.F. Stive, and J.W. Hall, eds. Flood risk management in Europe. Dordrecht, The Netherlands: Springer, 231–251. doi:10.1007/978-1-4020-4200-3_13
  • Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33 (2), 161–174. doi:10.1080/00401706.1991.10484804
  • New Zealand Society on Large Dams, 2015. New Zealand dam safety guidelines. Wellington, New Zealand: NZSOLD. Available from: https://nzsold.org.nz/wp-content/uploads/2019/10/nzsold_dam_safety_guidelines-may-2015-1.pdf [ Accessed 28 Oct 2022].
  • Norton, J., 2015. An introduction to sensitivity assessment of simulation models. Environmental Modelling and Software, 69, 166–174. doi:10.1016/j.envsoft.2015.03.020
  • Ongdas, N., et al., 2020. Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan. Water, 12 (10), 2672. doi:10.3390/w12102672
  • Papaioannou, G., et al., 2017. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling. Advances in Geosciences, 44, 23–34. doi:10.5194/adgeo-44-23-2017
  • Pappenberger, F., et al., 2006. Influence of uncertain boundary conditions and model structure on flood inundation predictions. Advances in Water Resources, 29 (10), 1430–1449. doi:10.1016/j.advwatres.2005.11.012
  • Pappenberger, F., et al., 2008. Multi-method global sensitivity analysis of flood inundation models. Advances in Water Resources, 31 (1), 1–14. doi:10.1016/j.advwatres.2007.04.009
  • Patra, J.P., Kumar, R., and Mani, P., 2019. Flood hazard assessment for a dam failure. International Journal of Advance and Innovative Research, 6 (2), 34–39. Available from: http://iaraedu.com/pdf/ijair-volume-6-issue-2-xxxi-april-june-2019.pdf [ Accessed 28 Oct 2022].
  • Pianosi, F., et al., 2016. Sensitivity analysis of environmental models: a systematic review with practical workflow. Environmental Modelling and Software, 79, 214–232. doi:10.1016/j.envsoft.2016.02.008
  • Pilotti, M., et al., 2020. Dam-break wave propagation in alpine valley with HEC-RAS 2D: experimental Cancano test case. Journal of Hydraulic Engineering, 146 (6), 05020003. doi:10.1061/(ASCE)HY.1943-7900.0001779
  • Poortvliet, P.M., et al., 2019. On the communication of statistical information about uncertainty in flood risk management. Safety Science, 118, 194–204. doi:10.1016/j.ssci.2019.05.024
  • Qi, H. and Altinakar, M.S., 2012. GIS-based decision support system for dam break flood management under uncertainty with two-dimensional numerical simulations. Journal of Water Resources Planning and Management, 138 (4), 334–341. doi:10.1061/(ASCE)WR.1943-5452.0000192
  • Quiroga, V.M., et al., 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: application of the new HEC-RAS version 5. Ribagua, 3 (1), 25–33. doi:10.1016/j.riba.2015.12.001
  • Rodrigues, A.S., et al., 2002. Dam-break flood emergency management system. Water Resources Management, 16 (6), 489–503. doi:10.1023/A:1022225108547
  • Sarchani, S. and Koutroulis, A.G., 2022. Probabilistic dam breach flood modeling: the case of Valsamiotis dam in Crete. Natural Hazards, 114 (2), 1763–1814. doi:10.1007/s11069-022-05446-0
  • Saxena, K.R. and Sharma, V.M., 2004. Dams: incidents and accidents. Leiden, The Netherlands: CRC Press.
  • Smemoe, C.M., et al., 2007. Demonstrating floodplain uncertainty using flood probability maps. Journal of the American Water Resources Association, 43 (2), 359–371. doi:10.1111/j.1752-1688.2007.00028.x
  • Teng, J., et al., 2017. Flood inundation modelling: a review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90, 201–216. doi:10.1016/j.envsoft.2017.01.006
  • Tsai, C.W., Yeh, J.-J., and Huang, C.-H., 2019. Development of probabilistic inundation mapping for dam failure induced floods. Stochastic Environmental Research and Risk Assessment, 33 (1), 91–110. doi:10.1007/s00477-018-1636-8
  • US Army Corps of Engineers, 2014. Using HEC-RAS for dam break studies. Davis, CA: USACE, Institute for Water Resources, Hydrologic Engineering Center. Available from: https://www.hec.usace.army.mil/publications/TrainingDocuments/TD-39.pdf [ Accessed 28 Oct 2022].
  • Vacondio, R., et al., 2017. A non-uniform efficient grid type for GPU-parallel shallow water equations models. Environmental Modelling and Software, 88, 119–137. doi:10.1016/j.envsoft.2016.11.012
  • Vacondio, R., Dal Palù, A., and Mignosa, P., 2014. GPU-enhanced finite volume shallow water solver for fast flood simulations. Environmental Modelling and Software, 57, 60–75. doi:10.1016/j.envsoft.2014.02.003
  • van Alphen, J. and Passchier, R., 2007. Atlas of flood maps–Examples from 19 European countries, USA and Japan. Ministry of Transport, Public Works and Water Management, The Netherlands. Available from: https://open.rws.nl/publish/pages/19689/383224.pdf [ Accessed 28 Oct 2022].
  • Veale, B. and Davison, I., 2013. Estimation of gravity dam breach geometry. In: Multiple use of dams and reservoirs: needs, benefits and risks. Proceedings of the NZSOLD/ANCOLD Conference, 13–15 November 2013, Rotorua, New Zealand. Wellington, New Zealand: IPENZ Proceedings of Professional Groups, 79–91. https://www.researchgate.net/profile/Ian-Davison-3/publication/315766007_Estimation_of_Gravity_Dam_Breach_Geometry/links/5c07502b92851c6ca1ff222e/Estimation-of-Gravity-Dam-Breach-Geometry.pdf [Accessed 28 Oct 2022].
  • Viseu, T. and Betâmio de Almeida, A., 2009. Dam-break risk management and hazard mitigation. In: WIT Transactions on State-of-the-art in Science and Engineering. Southampton, UK: WIT Press, 36, 211–239. doi:10.2495/978-1-84564-142-9/06
  • Vogel, A., Busswald, P., Niederl, F., 2004. The world largest data base on dam failures–data acquisition, management, protection and internet-based applications. In: S.-Y. Liong, K.-K. Phoon, and V. Babovic, eds. 6th International Conference on Hydroinformatics, 21–24 June 2004, Singapore. Singapore: World Scientific Publishing, Vol. 1 652–659. doi:10.1142/9789812702838_0080
  • Vorogushyn, S., et al., 2010. A new methodology for flood hazard assessment considering dike breaches. Water Resources Research, 46 (8), W08541. doi:10.1029/2009WR008475
  • Wade, S., et al., 2005. Risk to people: developing new approaches for flood hazard and vulnerability mapping. In: 40th Defra Flood and Coastal Management Conference, 5–7 July 2005, York, UK. Department for Environment, Food and Rural Affairs. Available from: https://eprints.hrwallingford.com/562/1/HRPP340-Risks_to_people-Flood_hazard_approaches.pdf [Accessed 28 Oct 2022].
  • Wahl, T.L., 2004. Uncertainty of predictions of embankment dam breach parameters. Journal of Hydraulic Engineering, 130 (5), 389–397. doi:10.1061/(ASCE)0733-9429(2004)130:5(389)
  • Willis, T., Wright, N., and Sleigh, A., 2019. Systematic analysis of uncertainty in 2D flood inundation models. Environmental Modelling and Software, 122, 104520. doi:10.1016/j.envsoft.2019.104520
  • Zarfl, C., et al., 2015. A global boom in hydropower dam construction. Aquatic Sciences, 77 (1), 161–170. doi:10.1007/s00027-014-0377-0
  • Zhang, L., et al., 2016. Dam failure mechanisms and risk assessment. Singapore: Wiley.
  • Zhang, L.M., Xu, Y., and Jia, J.S., 2009. Analysis of earth dam failures: a database approach. Georisk, 3 (3), 184–189. doi:10.1080/17499510902831759